Camera trap catches a badger burying a cow

The American badger is known to cache carrion in the ground. The animals squirrel away future meals underground, which acts something like a natural refrigerator, keeping their food cool and hidden from anything that might want to steal it. Researchers, though, had never spotted badgers burying anything bigger than a jackrabbit — until 2016, when a young, dead cow went missing in a study of scavengers in northwestern Utah.

That January, University of Utah researchers had set out seven calves (all of which had died from natural causes) weighing 18 to 27 kilograms in the Great Basin Desert, each monitored by a camera trap. After a week, one of the carcasses went missing, even though it, like the others, had been staked in place so nothing could drag it off. But perhaps a coyote or mountain lion managed the feat, the researchers thought.

Then they checked the camera. What they found surprised them.

The images showed a badger happening upon the calf on January 16. The next evening, the badger returned and spent four hours digging below and around the bovine, breaking for only five minutes to snack on its find. It came back and continued digging the next afternoon and the following morning, by which time the calf had fallen into the crater the badger had dug. But that wasn’t the end. The badger then spent a couple more days backfilling the hole, covering its find and leaving itself a small entrance.
The badger stayed with his meal for the next couple of weeks, venturing out briefly from time to time. (It’s impossible to know where the badger went, but getting a drink is one possibility, says the study’s lead author Ethan Frehner.) By late February, the badger was still visiting its find from time to time. But herds of (living) cows kept coming through the site, and though the badger checked on its cache several times, it never re-entered the burrow after March 6.

It turns out that this badger was not alone in taking advantage of the research project for a huge, free meal. Simultaneously at one of the other carcass sites about three kilometers away, another badger attempted to bury a calf that had been staked out there. It only got the job partway done, though, as the anchoring stake prevented the badger from finishing a full burial. Instead, the badger dug itself a hole and spent several weeks there, periodically feeding on its find.
This is the first time scientists have documented American badgers burying a carcass so much bigger than themselves (the calves were three to four times the weight of the badgers), the team reports March 31 in Western North American Naturalist.

“All scavengers play an important ecological role — helping to recycle nutrients and to remove carrion and disease vectors from the ecosystem,” Frehner says. “The fact that American badgers could bury carcasses of this size indicates that they could potentially bury the majority of the carrion that they would come into contact with in the wild. If they exhibit this behavior across their range, the American badger could be accounting for a significant amount of the scavenging and decomposition process which occurs throughout a large area in western North America.”

And that burial may have a benefit for ranchers, the researchers note: If badgers bury calves that have died of disease, that may reduce the likelihood that a disease will spread. It’s too soon to say whether that happens, but study co-author Evan Buechley notes, “that merits further study.”

Stunning images reveal glacial landscapes under the oceans

The footprints of long-gone glaciers and icebergs are now frozen in time in a stunning new collection of images of Earth’s seafloor.

The Atlas of Submarine Glacial Landforms is a comprehensive, high-resolution atlas of underwater landscapes that have been shaped by glaciers, largely in polar and subpolar regions, and provides a comparative look at how glaciers, ice and related climate shifts transform Earth. Kelly Hogan, a marine geophysicist with the British Antarctic Survey and an editor of the atlas, presented it April 26 in Vienna at a meeting of the European Geosciences Union.
Most of the more than 200 images were generated from research vessels using multibeam bathymetry, which renders the seafloor surface in 3-D, exposing a region’s glacial history. For example, the distinctive asymmetry of 20,000-year-old glacial deposits called drumlins in the Gulf of Bothnia, between Finland and Sweden, suggests that ice flowed south, toward a larger glacier in the Baltic Sea.

Other images reveal the tracks of icebergs that once plowed and scribbled the ocean floor, such as those seen in the Barents Sea in the Arctic Ocean. The tracks may look random, but they tell tales of past currents and water depth.

In all, the seafloor depicted in the atlas covers an area about the size of Great Britain. But the real impact of the project goes beyond individual images, Hogan says. She expects that scholars exploring glacial history, researchers predicting future ice behavior and climate scientists are among those who will keep a copy close at hand.

50 years ago, diabetic mice offered hope for understanding human disease

[Millions of diabetics] could be indebted to a strain of diabetic mice being bred in Bar Harbor, Maine. In diabetes research, “this mouse is the best working model to date,” one of its discoverers, Dr. Katharine P. Hummel, says.… A satisfactory animal subject had eluded diabetes researchers, until the mouse was found. — Science News, August 12, 1967

Update
Hummel’s diabetic mice are still used in research to mimic type 2 diabetes in humans, which is linked to obesity. In the mid-1990s, researchers found that the diabetic mice carry a mutation in the leptin receptor gene, which prevents the hormone leptin from signaling fullness and triggering other metabolic processes. In people, however, the disease is more complicated. More than 40 genetic variants are associated with susceptibility to type 2 diabetes. Unlike the mouse mutation, none of those variants guarantee a person will develop the disease.

Neandertal kids were a lot like kids today — at least in how they grew

A Neandertal child whose partial skeleton dates to around 49,000 years ago grew at the same pace as children do today, with a couple of exceptions. Growth of the child’s spine and brain lagged, a new study finds.

It’s unclear, though, whether developmental slowing in those parts of the body applied only to Neandertals or to Stone Age Homo sapiens as well. If so, environmental conditions at the time — which are currently hard to specify — may have reduced the pace of physical development similarly in both Homo species.
This ancient youngster died at 7.7 years of age, say paleoanthropologist Antonio Rosas of the National Museum of Natural Sciences in Madrid and colleagues. The scientists estimated the child’s age by counting microscopic enamel layers that accumulated daily as a molar tooth formed.

Previous excavations uncovered the child’s remains, as well as fossils of 12 other Neandertals, at a cave site in northwestern Spain called El Sidrόn.

Much — but not all —of the Neandertal child’s skeleton had matured to a point expected for present-day youngsters of the same age, the scientists report in the Sept. 22 Science. But bones at the top and in the middle of the spine had not fully fused, corresponding to a stage of development typical of 4- to 6- year-olds today. Also, the ancient child’s brain was still growing at an age when living humans’ brains have nearly or fully reached adult size. Signs of bone tissue being reshaped on the inner surface of the child’s braincase pointed to ongoing brain expansion. Rosas’ team calculated that the youngster’s brain volume was about 87.5 percent of that expected, on average, for Neandertal adults.

Neandertals’ slightly larger brains relative to people today may have required more energy, and thus more time, to grow, the researchers suggest. And they suspect that the growth of Neandertals’ bigger torsos, and perhaps spinal cords, slowed the extinct species’ backbone development in late childhood.

Rosas’ new study “reinforces what should have been apparent for some time — that Neandertal growth rates and patterns, except for those related to well-known differences in [skeletal shape], rarely differ from modern human variations,” says paleoanthropologist Erik Trinkaus of Washington University in St. Louis.

But researchers need to compare the El Sidrόn child to fossils of H. sapiens youngsters from the same time or later in the Stone Age, Trinkaus adds. Relative to kids today, ancient human youth may display slower growth rates comparable to those of the Neandertal child, he suspects.

Trio wins physics Nobel Prize for gravitational wave detection

Subtle cosmic vibrations kicked up by swirling black holes have captured the public imagination — and the minds of the physics Nobel Prize committee members, too.

Three scientists who laid the groundwork for the first direct detection of gravitational waves have won the Nobel Prize in physics. Rainer Weiss of MIT, and Kip Thorne and Barry Barish, both of Caltech, will share the 9-million-Swedish-kronor (about $1.1 million) prize, with half going to Weiss and the remainder split between Thorne and Barish.
Though researchers often wait decades for Nobel recognition, the observation of gravitational waves was so monumental that the scientists were honored less than two years after the discovery’s announcement.

“These detections were so compelling and earth shattering…. Why wait?” says Clifford Will of the University of Florida in Gainesville, who was not directly involved with the discovery. “It’s fabulous. Absolutely fabulous.”

Weiss, Thorne and Barish are pioneers of the Laser Interferometer Gravitational Wave Observatory, or LIGO. On February 11, 2016, LIGO scientists announced they had spotted gravitational waves produced by a pair of merging black holes. This first-ever detection generated a frenzy of excitement among physicists and garnered front-page headlines around the world.

LIGO’s observation of gravitational waves directly confirmed a 100-year-old prediction of Einstein’s general theory of relativity — that rapidly accelerating massive objects stretch and squeeze spacetime, producing ripples that travel outward from the source (SN: 3/5/16, p. 22).
“If Einstein was still alive, it would be absolutely wonderful to go to him and tell him about the discovery. He would be very pleased, I’m sure of it,” Weiss said during a news conference at MIT a few hours after he got word of the win. “But then to tell him what the discovery was, that it was a black hole, he would have been absolutely flabbergasted because he didn’t believe in them.”

As enthusiastic team members clad in LIGO-themed T-shirts celebrated the discovery, Weiss stressed that the discovery was a group effort. “I’m a symbol of that. It’s not all on my shoulders, this thing,” he said, citing the large collaboration of scientists whose work led up to LIGO’s detection.

Physicists anticipate that LIGO will spark an entirely new field of astronomy, in which scientists survey the universe by feeling for its tremors. “It will allow us to see the parts of the universe that were not revealed to us before,” says LIGO team member Carlos Lousto of the Rochester Institute of Technology in New York.

LIGO’s first incarnation, which officially began collecting data in 2002 and ran intermittently until 2010, yielded no hints of gravitational waves. After years of upgrades, the souped-up detectors, known as Advanced LIGO, began searching for spacetime ripples in 2015. Almost as soon as the detectors were turned on — even before scientific data-taking had formally begun — scientists detected the minuscule undulations of their first black hole collision. Those ripples, spotted on September 14, 2015, journeyed to Earth from 1.3 billion light-years away, where they were produced by two colossal black holes that spiraled inward and merged into one (SN: 3/5/16, p. 6).

Quivers from those converging black holes, when converted into an audio signal, made a tell-tale sound called a “chirp,” reminiscent of a bird’s cry. The particulars of that signature reveal details of the collision. “The beauty of the symphony is in what you can extract from the tiny wiggles, or the wiggles on tops of wiggles, in that signal,” Thorne said at an Oct. 3 news conference at Caltech.
Since that first detection, scientists have observed three more black hole collisions. And additional gravitational ripples may already be in the bag: It’s rumored that LIGO scientists have also detected a smashup of neutron stars (SN Online: 8/25/17). In fact, Weiss teased an announcement to come on October 16.

An astounding feat of engineering, LIGO consists of two enormous L-shaped detectors that stretch across the wooded landscape of Livingston, La., and the desert of Hanford, Wash. Each detector boasts two 4-kilometer-long arms through which laser light bounces back and forth between mirrors.

Gravitational waves passing through a detector stretch one arm while shortening the other. LIGO compares the arms’ sizes using the laser light to measure length differences a tiny fraction of the size of a proton. Gravitational waves should produce signals in the two distant detectors nearly simultaneously, helping scientists to rule out spurious signals that can be caused by events as mundane as a truck bouncing along nearby.

“LIGO is probably one of the best and most amazing instruments ever built by mankind,” Barish said at the Caltech news conference. But building it was a risky endeavor: No one had previously attempted anything like it, and no one could say for sure whether the effort would succeed. “What’s fundamental is you have to be willing to take risks to do great things,” Barish said.

In August, LIGO’s two detectors teamed up with the similarly designed Virgo detector near Pisa, Italy (SN Online: 8/1/17). The latest gravitational wave sighting, made on August 14, showed up in all three detectors almost simultaneously, which allowed scientists to pinpoint the region of space in which the black holes resided more precisely than ever before (SN Online: 9/27/17).

Weiss spent decades on the project, beginning with nascent scribbles on scraps of paper and early prototypes. In the 1960s, Weiss came up with the idea for a laser gravitational wave detector while teaching a class on general relativity. (Other researchers had independently proposed the technique as well.) He refined that idea and built a small, prototype detector, establishing the basic blueprint that would eventually evolve into LIGO.
Inspired by a conversation with Weiss, Thorne, who had been studying theoretical aspects of gravitational waves, assembled a team to work on the technique at Caltech in the ’70s. (Thorne was a 1958 semifinalist in the Science Talent Search, a program of the Society for Science & the Public, which publishes Science News.)

Another LIGO founder, Ronald Drever, died in March. Drever, who had been working on gravitational wave detectors at the University of Glasgow, joined Thorne at Caltech in 1979. Weiss and Drever each worked individually on prototypes, before Weiss officially teamed up with Thorne and Drever in 1984 to create LIGO (SN: 3/5/16, p. 24). Drever did live to hear of the first detection, Will says, but “it’s sad that he didn’t live to see it all.”

Barish joined the project later, becoming director of LIGO in 1994. He stayed in that role for more than 10 years, elevating LIGO from scientists’ daydreams into reality. Barish oversaw construction and commissioning of the detectors, as well as initial gravitational wave searches. “He entered the experiment in a crucial moment, when it was necessary to bring the experiment to a different level, make it a big collaboration,” says Alessandra Buonanno of the Max Planck Institute for Gravitational Physics in Potsdam, Germany.

Speculation that LIGO would nab a Nobel began as soon as the discovery was announced. So the collaboration was not surprised by the honor. “We were certainly expecting this to happen,” says LIGO team member Manuela Campanelli of the Rochester Institute of Technology. Still, the lack of surprise didn’t dampen the mood of festivity. “I feel in a dream,” says Buonanno.

LIGO and Virgo are currently in a shutdown period while scientists tinker with the detectors to improve their sensitivity. The gravitational wave hunt will resume next year. Besides black hole mergers and neutron star smashups, in the future, scientists might also spot waves from an exploding star, known as a supernova. Upcoming detectors might sense trembles generated in the Big Bang, providing a glimpse of the universe’s beginnings.

And scientists may even find new phenomena that they haven’t predicted. “I await expectantly some huge surprises in the coming years,” Thorne said.

In the deep ocean, these bacteria play a key role in trapping carbon

A mysterious group of microbes may be controlling the fate of carbon in the dark depths of the world’s oceans.

Nitrospinae bacteria, which use the nitrogen compound nitrite to “fix” inorganic carbon dioxide into sugars and other compounds for food and reproduction, are responsible for 15 to 45 percent of such carbon fixation in the western North Atlantic Ocean, researchers report in the Nov. 24 Science. If these microbes are present in similar abundances around the world — and some data suggest that the bacteria are — those rates may be global, the team adds.
The total amount of carbon that Nitrospinae fix is small when compared with carbon fixation on land by organisms such as plants or in the sunlit part of the ocean, says Maria Pachiadaki, a microbial ecologist at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine, who is lead author on the new study. “But it seems to be of major importance to the productivity and health of the 90 percent of the ocean that is too deep and too dark for photosynthesis.” These bacteria likely form the base of the food web in much of this enigmatic realm, she says.

Oceans cover more than two-thirds of Earth’s surface, and most of those waters are in the dark. In the shallow, sunlit part of the ocean, microscopic organisms called phytoplankton fix carbon dioxide through photosynthesis. But in the deep ocean where sunlight doesn’t penetrate, microbes that use chemical energy derived from compounds such as ammonium or hydrogen sulfide are the engines of that part of the carbon cycle.

Little has been known about which microbes are primarily responsible for this dark ocean carbon fixation. The likeliest candidates were a group of ammonium-oxidizing archaea (single-celled organisms similar to bacteria) known as Thaumarchaeota because they are the most abundant microbes in the dark ocean.

But there was no direct proof that these archaea are the main fixers in those waters, says Pachiadaki. In fact, previous studies of carbon fixation in these depths suggested that ammonium-oxidizers weren’t performing the task quickly enough to match observations, she says. “The energy gained from ammonium oxidation is not enough to explain the amount of the carbon fixed in the dark ocean.”
She and colleagues suspected that a different group of microbes might be bearing the brunt of the task. Nitrospinae bacteria that use the chemical compound nitrite were known to be abundant in at least some parts of the dark ocean, but the microbes weren’t well studied. So Pachiadaki’s team analyzed 3,463 genomes, or genetic blueprints, of single-celled organisms found in 39 seawater samples collected in the western North Atlantic Ocean, at depths ranging from “twilight” regions below about 200 meters to the ocean’s deepest zone below 9,000 meters. The team identified Nitrospinae as the most abundant bacteria, particularly in the twilight zone. Although still less abundant than the ammonium-oxidizing Thaumarchaeota, the nitrite-oxidizers are much more efficient at fixing carbon, requiring only a tiny amount of available nitrite.

And although scientists knew that these bacteria use nitrite to produce energy, the new study showed that the compound is the primary source of energy for the microbes. Marine microbiologist Frank Stewart of Georgia Tech in Atlanta says the study “exemplifies how advances in genomic methods can generate hypotheses about metabolism and ecology.” These findings suggest that scientists need to rethink how energy and materials cycle in the dark ocean, he says. “While this ocean realm remains underexplored, studies like this are models for how to close our knowledge gap.”

Babies’ kicks in the womb are good for their bones

One of the strangest things about growing a human being inside your body is the alien sensation of his movements. It’s wild to realize that these internal jabs and pushes are the work of someone else’s nervous system, skeleton and muscles. Someone with his own distinct, mysterious agenda that often includes taekwondoing your uterus as you try to sleep.

Around the 10-week mark, babies start to bend their heads and necks, followed by full-body wiggles, limb movement and breathing around 15 weeks. These earliest movements are usually undetectable by pregnant women, particularly first-timers who may not recognize the flutters until 16 to 25 weeks of pregnancy. These movements can be exciting and bizarre, not to mention uncomfortable. But for the developing baby, these kicks are really important, helping to sculpt muscles, bones and joints.
While pregnant women can certainly sense a jab, scientists have largely been left in the dark about how normal fetuses move. “It’s extremely difficult to investigate fetal movements in detail in humans,” says Stefaan Verbruggen, a bioengineer formerly at Imperial College London who recently moved to Columbia University in New York.

Now, using relatively new MRI measurements of entire fetuses wiggling in utero, researchers have tracked these kicks across women’s pregnancies. The results, published January 24 in the Journal of the Royal Society Interface, offer the clearest look yet at fetal kicking and provide hints about why these moves are so important.
Along with bioengineer Niamh Nowlan, of ICL, and colleagues, Verbruggen analyzed videos of fetal kicks caught on MRI scans. These scans, from multiple pregnant women, included clear leg kicks at 20, 25, 30 and 35 weeks gestation. Other MRI scans provided anatomical details about bones, joints and leg sizes. With sophisticated math and computational models, the researchers could estimate the strengths of the kicks, as well as the mechanical effects, such as stresses and strains, that those kicks put on fetal bones and joints.
Kicks ramped up and became more forceful from 20 to 30 weeks, the researchers found. During this time, kicks shifted the wall of the uterus by about 11 millimeters on average, the team found. But by 35 weeks, kick force had declined, and the uterus moved less with each kick, only about 4 millimeters on average. (By this stage, things are getting pretty tight and tissues might be stretched taut, so this decrease makes sense.) Yet even with this apparent drop in force, the stresses experienced by the fetus during kicks kept increasing, even until 35 weeks. Increasing pressure on the leg bones and joints probably help the fetus grow, the researchers write.

Other work has found that the mechanical effects of movement can stimulate bone growth, which is why weight-bearing exercises, such as brisk walking and step aerobics, are often recommended for people with osteoporosis. In animal studies, stationary chick and mouse fetuses have abnormal bones and joints, suggesting that movement is crucial to proper development.

The results highlight the importance of the right kinds of movements for fetuses’ growth. Babies born prematurely can sometimes have joint disorders. It’s possible that bone growth and joints are affected when babies finish developing in an environment dominated by gravity, instead of the springy, tight confines of a uterus. Even in utero position might have an effect. Head-up breech babies, for instance, have a higher risk of a certain hip disorder, a link that hints at a relationship between an altered kicking ground and development. In fact, the researchers are now looking at the relationship between fetal movements and skeletal stress and strain in these select groups.

Mechanical forces in utero might have long-lasting repercussions. Abnormal joint shapes are thought to increase the risk of osteoarthritis, says Verbruggen, “which means that how you move in the womb before you’re even born can affect your health much later in life.”

There’s a lot more work to do before scientists fully understand the effects of fetal movements, especially those in less than ideal circumstances. But by putting hard numbers to squirmy wiggles, this new study is kicking things off right.

SpaceX just launched its biggest rocket for the first time

It’s another record for SpaceX. At 3:50 p.m. Eastern on February 6, the private spaceflight company launched the Falcon Heavy rocket for the first time.

The Heavy — essentially three SpaceX Falcon 9 rocket boosters strapped together — is the most powerful rocket launched since the Saturn V, which shot astronauts to the moon during the Apollo program. SpaceX hopes to use the Heavy to send humans into space. The company is developing another rocket, dubbed the BFR, to eventually send people to Mars.
Another first for this launch: the synchronized return of two of the boosters. (The third, from the center core, didn’t descend properly, and instead of landing on a droneship, it hit the ocean at 300 mph.) Part of SpaceX’s program is to reuse rockets, which brings down the cost of space launches. The company has successfully landed the cores of its Falcon 9 rockets 21 times and reflew a rocket six times. The company landed a previously used rocket for the first time in March.

But the cargo for today’s launch is aimed at another planet. The rocket carried SpaceX CEO Elon Musk’s red Tesla Roadster with “Space Oddity” by David Bowie playing on the stereo. It is now heading toward Mars.

“I love the thought of a car drifting apparently endlessly through space and perhaps being discovered by an alien race millions of years in the future,” Musk tweeted in December.
Editor’s note: This story was updated on February 7 to update the status of the booster landings, and again on February 9 to correct the rocket that SpaceX hopes to use to send people to Mars. The company intends to use its BFR rocket, not the Falcon Heavy.

Google moves toward quantum supremacy with 72-qubit computer

LOS ANGELES — Quantum computers are bulking up.

Researchers from Google are testing a quantum computer with 72 quantum bits, or qubits, scientists reported March 5 at a meeting of the American Physical Society — a big step up from the company’s previous nine-qubit chip.

The team hopes to use the larger quantum chip to demonstrate quantum supremacy for the first time, performing a calculation that is impossible with traditional computers (SN: 7/8/17, p. 28), Google physicist Julian Kelly reported.
Achieving quantum supremacy requires a computer of more than 50 qubits, but scientists are still struggling to control so many finicky quantum entities at once. Unlike standard bits that take on a value of 0 or 1, a qubit can be 0, 1 or a mashup of the two, thanks to a quantum quirk known as superposition.

Nicknamed Bristlecone because its qubits are arranged in a pattern resembling a pinecone’s scales, the computer is now being put through its paces. “We’re just starting testing,” says physicist John Martinis of Google and the University of California, Santa Barbara. “From what we know so far, we’re very optimistic.” The quantum supremacy demonstration could come within a few months if everything works well, Martinis says.

Google is one of several companies working to make quantum computers a reality. IBM announced it was testing a 50-qubit quantum computer in November 2017 (SN Online: 11/10/17), and Intel announced a 49-qubit test chip in January.

New Horizons’ next target has been dubbed Ultima Thule

And the winner is in. Of the roughly 34,000 submissions sent in by the public, NASA has finally chosen an official nickname for the New Horizons spacecraft’s next destination: Ultima Thule.

New Horizons is scheduled to visit the tiny Kuiper Belt object on New Year’s Day 2019. NASA announced in November that it was seeking public input for a catchier name than the object’s existing moniker: 2014 MU69. Submissions varied wildly, ranging from the mythological Olympus to the much less grandiose Nubbin, defined as a “small lump or residual part” (SN Online: 11/7/17).

The final choice, Ultima Thule (pronounced “thoo-lee”), was announced March 13. It means “beyond the borders of the known world.” The nickname is a nice fit since the object will be the most distant solar system body ever visited.

After the flyby, NASA will submit a formal name to the International Astronomical Union based on whether Ultima Thule is a single object, a binary pair or a multi-object system.