The Milky Way: An Autobiography of Our Galaxy takes a tour of our home in the cosmos from an unexpected perspective. Astrophysicist and folklorist Moiya McTier presents herself not as the author, but as the lucky human vessel through which the Milky Way has chosen to tell its story. Then she lets the galaxy take it away, with humor, heart and a huge dose of snark.
The book alternates chapters between science and mythology, reflecting McTier’s dual specialties (her bio says she was the first student in Harvard University’s history to study both). “Many of you don’t realize this, but myths were some of your species’ first attempt at scientific inquiry,” the Milky Way tells us.
The Milky Way is telling its story now because it’s sick of being ignored. Once upon a time, humans looked to the glittering smudge of stars in the sky for insight into when to plant crops or avoid floods. We told stories about the Milky Way’s importance in the origin and fate of the world.
Our galaxy ate it up: For an entity that spends most of its time ripping up smaller galaxies and watching its own stars die, “your stories made me feel loved and needed and, perhaps for the first time in my long existence, more helpful than I was ruinous.” But in the last few centuries, technology and light pollution have pulled humankind away. “At first, I thought it was just a phase,” the Milky Way says. “Then I remembered … that several hundred years is actually a long time for humans.” So the Milky Way decided to remind us why it’s so important. Its autobiography covers big-picture scientific questions about galaxies, like where they come from (“When a gas cloud loves itself very much,” the Milky Way explains, “it hugs itself extra tight, and after a few hundred million years, a baby galaxy is born. Leave the storks out of it, please.”). It also gets into what galaxies are made of, how they interact with other galaxies, and how they live and die. The book then zooms out to cover the origins and possible ends of the universe, mysteries like dark matter and dark energy, and even humankind’s search for other intelligent life (SN: 8/4/20).
The author takes pains to explain scientific jargon and the technical tools that astronomers use to study the sky. A lot of popular astronomy writing glosses over how astronomers think about cosmic distance or exactly what a spectrum is, but not this book. If you’ve ever been curious about these insider details, The Milky Way has you covered.
McTier’s version of our home galaxy is heavily anthropomorphized. The Milky Way is brash, vain and arrogant in a way that may hide a secret insecurity. Its central black hole is characterized as the physical embodiment of the galaxy’s shame and regrets, a source of deep existential angst. And its relationship with the Andromeda galaxy is like a long-term, long-distance romance, with each galaxy sending stars back and forth as love notes until the two can eventually merge (SN: 3/05/21).
This could have felt gimmicky. But McTier’s efforts to make the metaphors work while keeping the science accurate and up-to-date made the premise endearing and entertaining.
I laughed twice on Page 1. I learned a new word on Page 2. I dog-eared the endnotes early on because it became instantly clear I would want to read every one. I read this book while traveling in rural upstate New York, where the sky is much clearer than at my home outside of Boston. The Milky Way reminded me to look up and appreciate my home in the universe, just like its narrator wanted.
For millions of people, COVID-19 doesn’t end with a negative test. Weeks or months after traces of the virus disappear from noses and throats, symptoms can persist or come back. New ones might pop up and stick around for months. People suffering from long COVID are unwillingly in it for the long haul — and it’s still unclear who’s at the highest risk for the condition.
Researchers don’t yet have an official definition for long COVID, and its symptoms are wide-ranging (SN: 7/29/22). Some people struggle with extreme fatigue that interferes with their daily lives. Others can’t concentrate or struggle with memory amid thick brain fog. Still others have organ damage or a persistent cough and difficulty breathing. “There are a variety of different kinds of ways that people can have long COVID. It’s not just the one thing,” says Leora Horwitz, an internal medicine physician at New York University Langone Health. “That’s what makes it so hard to study.”
This spectrum of symptoms makes pinning down who’s at high risk for long-term health problems from the disease especially hard. Some post-COVID conditions may stem from virus-induced damage or from the stress of being hospitalized with severe disease. In other cases, the body’s own immune response to the virus could drive the damage. Or the virus may be hiding somewhere in the body, possibly the gut, helping symptoms to persist (SN: 11/24/20). Different causes may have different risk groups, says Hannah Davis, cofounder of the Patient-Led Research Collaborative, a research and advocacy group studying long COVID.
There are some broad hints about who’s at risk. Studies suggest that women are more likely than men to have lingering symptoms. COVID-19 patients with more than five symptoms in the first week of infection or preexisting health conditions such as asthma may be more likely to develop long COVID. Age also appears to be a risk factor, though results are mixed regarding whether the burden falls on older people or middle-aged people. Populations that were disproportionally hit by COVID-19 overall — including Black and Hispanic people — may similarly face disparities for long COVID. And while vaccination seems to protect people from developing long COVID, Horwitz says, it’s still unclear by how much.
Age is a risk factor for severe COVID-19, and the U.S. Centers for Disease Control and Prevention lists more than 30 health problems, including cancer and lung disease, that also raise the risk. “So many researchers assume that those [risk factors] will be the same for long COVID and there’s no scientific basis for that,” Davis says. There are many more that researchers could be missing when it comes to long COVID.
Using health records and exams, and knowledge of ailments with symptoms similar to long COVID, experts are on the hunt for those risk factors.
Examining health When it comes to getting a better handle on who’s at risk for long COVID — which also goes by the wonky alias Post-Acute Sequelae of SARS-CoV-2 infection — electronic health records may hold important clues.
Horwitz is part of the U.S. National Institutes of Health’s RECOVER initiative that aims to understand the long-term impacts of COVID-19. One arm of the study involves mining millions of electronic health records to find potential patterns.
Studying millions of these records should pinpoint potential risk factors that are rare in the population overall but perhaps more common for people with long COVID, Horwitz says. “That’s hard even in a cohort study of thousands.”
But health records aren’t perfect: They depend on physicians logging that patients are having trouble sleeping or focusing, or that they’re exhausted. “The things people are complaining about, we’re really bad at writing down those diagnoses on the record,” Horwitz says. “So we miss that.” To account for health records’ deficiencies, Horwitz and colleagues are also directly studying thousands of people. Participants answer a questionnaire every three months so that the team can identify what kinds of symptoms people have and whether they’re getting better or worse.
Then blood, urine, stool and saliva samples can reveal what’s happening in the body. Tests on those samples can uncover if the coronavirus is still around and causing trouble, or if the immune system has learned to attack the body itself. Participants with abnormal test results will undergo additional, targeted testing.
“Unlike electronic health records where it’s hit or miss, like somebody might have had a CAT scan or might not, here we say, ‘OK, you have trouble breathing. We will take a look at your lungs,’” Horwitz says.
The study includes a range of participants: adults and kids, pregnant people, those currently with COVID-19 and people who died after having the disease.
Some of the potential risk factors that the team is looking for include autoimmune diseases and other viral infections. The list may grow as more people join the study. “We’re trying to balance the fishing versus making sure that we’re at least fishing for things that could be in the water,” Horwitz says.
Among short supply, though, are people who never caught the virus — important “controls” to highlight what’s different about people who got COVID-19.
So far, more than 7,000 people have signed up, and the group plans to recruit around 10,000 more. It’s a lot of data, but early results may soon start coming in.
“We’ll probably try to do an interim peek at those data this fall,” Horwitz says. “It’s tricky because we deliberately wanted to enroll 18,000 people so we would have enough power to really look at the things we care about. I don’t want to cheat and look too early, but we also know that there’s a lot of interest.”
Striking similarities Some long COVID symptoms — brain fog, fatigue and trouble sleeping — mirror another illness: myalgic encephalomyelitis/chronic fatigue syndrome, or ME/CFS. Other long COVID symptoms, such as rapid heartbeat and dizziness, fall in the category of nervous system disorders called dysautonomia. Similar symptoms could belie similar risk factors.
Yet potential risk factors for those conditions are largely missing from long COVID research, says Davis, who has had long COVID since March 2020. Among the possibilities that scientists are considering are things like Epstein-Barr virus, migraines and some autoimmune diseases.
Epstein-Barr virus could be a big one, Davis says. Infections last a lifetime because the virus can go into hiding in the body and possibly reemerge. That virus has been linked to ME/CFS for decades, though its role in the disease remains unclear, Davis says. Some early hints of a link between Epstein-Barr virus and long COVID already exist. Multiple studies have found evidence in blood samples from some long COVID patients that the immune system recently battled with Epstein-Barr virus, which can cause infectious mononucleosis, a disease characterized by extreme fatigue. Other studies have found signs of the virus itself. And in 2021, Davis and colleagues found that 40 out of 580 people with symptoms of long COVID who responded to an online survey reported having a current or recent Epstein-Barr virus infection.
With ME/CFS, it’s possible that another illness caused by a different virus triggers the Epstein-Barr virus, which then causes the fatigue syndrome. Given the parallels between that condition and long COVID, some scientists are wondering if the two are actually the same disease, with the coronavirus now known as one trigger.
Examining health conditions that raise the chances of long COVID could provide answers for both diseases, says Nancy Klimas, an immunologist at Nova Southeastern University in Fort Lauderdale, Fla. That’s in part because researchers can more easily identify people who developed lingering symptoms after a bout of COVID-19 compared with unknown infections that may precede ME/CFS.
Also, “there’s a huge difference in these two fields and it’s money,” Klimas says. She now has funding from the CDC to compare long COVID patients with people who have ME/CFS. The team hopes that physical exams and specialized tests will reveal whether the two diseases are indeed the same and be a step toward understanding the mechanisms behind the lingering symptoms.
Still, since long COVID as a whole encompasses such a wide range of symptoms, it will take time to uncover who is at risk of what.
If COVID-19 were just one disease impacting the lungs, heart or brain, the research might be easier, Horwitz says. “But we have to test everything.”
The Arctic is heating up at a breakneck speed compared with the rest of Earth. And new analyses show that the region is warming even faster than scientists thought. Over the last four decades, the average Arctic temperature increased nearly four times as fast as the global average, researchers report August 11 in Communications Earth & Environment.
And that’s just on average. Some parts of the Arctic Ocean, such as the Barents Sea between Russia and Norway’s Svalbard archipelago, are warming as much as seven times as fast, meteorologist Mika Rantanen of the Finnish Meteorological Institute in Helsinki and colleagues found. Previous studies have tended to say that the Arctic’s average temperature is increasing two to three times as fast as elsewhere, as humans continue causing the climate to change. To calculate the true pace of the accelerated warming, a phenomenon called Arctic amplification, the researchers analyzed observational data from 1979 to 2021 (SN: 7/1/20). Globally, the average temperature increase over that time was about 0.2 degrees Celsius per decade. But the Arctic was warming by about 0.75 degrees C per decade. Even the best climate models are not doing a great job of reproducing that warming, Rantanen and colleagues say. The inability of the models to realistically simulate past Arctic amplification calls into question how well the models can project future changes there.
It’s not clear where the problem lies. One issue may be that the models are struggling with correctly simulating the sensitivity of Arctic temperatures to the loss of sea ice. Vanishing snow and ice, particularly sea ice, are one big reason why Arctic warming is on hyperspeed. The bright white snow and ice create a reflective shield that bounces incoming radiation from the sun back into space. But open ocean waters or bare rocks absorb that heat, raising the temperature.
In the animal world, just like the human one, sometimes it’s not easy being mom. Fellow blogger Laura Sanders will tell you all about the trials and tribulations of being a mother to Homo sapiens. But some moms of the animal kingdom make sacrifices that go far beyond carrying a baby for nine months or paying for college.
Binge-eating sea otters Adult female sea otters spend six months out of every year nursing at least one pup, sometimes two. Feeding herself isn’t easy — she’s got to eat the equivalent of 20 to 25 percent of her body mass every day to survive. But that amount has to increase while she’s nursing. By the time a pup is weaned at six months old, mom has to nearly double her food intake, researchers reported last year in the Journal of Experimental Biology. And to make matters worse, sometimes her kid will steal her food. Single, starving mom About two months before giving birth, a polar bear will enter her maternity den, remaining there for four to eight months. She stays holed up for that entire time, never eating, never drinking. Her cubs, only about half a kilogram at birth, grow quickly feeding on mom’s rich milk. And once they’re big enough to venture out, mama bear leads her babies straight to the sea so she can finally catch herself a meal.
Walled in by poo Various species of Asian hornbills all share a similar nesting strategy: To protect her eggs from predators, mom walls herself up in a tree with a combination of mud, feces and regurgitated fruit. She leaves one tiny hole, through which dad feeds her for up to four months when mother and children are finally ready to emerge.
Endless sleepless nights Human babies are known for their ability to rouse mom with their cries and prevent her from getting much sleep. But orca and dolphin moms don’t sleep at all for a month or more after they give birth. Unlike human babies that need a lot of sleep, tiny orcas and dolphins don’t sleep in the weeks after they’re born. That means no sleep for mom.
It’s mom for dinner There’s a hint in the name of a limbless amphibian called Microcaecilia dermatophaga — young caecilians eat the skin of their mother, researchers reported in 2013 in PLOS ONE. But in a recent issue of Science News, Susan Milius highlighted an even more disgusting case of mom serving herself up for her kids: A female Stegodyphus lineatus spider feeds her young on a regurgitated slurry made up of the last meals she’ll ever eat — and her own guts. Milius writes:
“As liquid wells out on mom’s face, spiderlings jostle for position, swarming over her head like a face mask of caramel-colored beads. This will be her sole brood of hatchlings, and she regurgitates 41 percent of her body mass to feed her spiderlings.”
The next time your mom talks about how much she sacrificed for you, say thanks, but remember, at least you didn’t eat her stomach.
A zap to the head can stretch the time between intention and action, a new study finds. The results help illuminate how intentions arise in the brain.
The study, published in the May 6 Journal of Neuroscience, “provides fascinating new clues” about the process of internal decision making, says neuroscientist Gabriel Kreiman of Harvard University. These sorts of studies are bringing scientists closer to “probing some of the fundamental questions about who we are and why we do what we do,” he says. Figuring out how the brain generates a sense of control may also have implications for people who lack those feelings. People with alien hand syndrome, psychogenic movement disorders and schizophrenia can experience a troubling disconnect between intention and action, says study coauthor Biyu Jade He of the National Institutes of Health in Bethesda, Md.
In the study, the researchers manipulated people’s intentions without changing their actions. The researchers told participants to click a mouse whenever the urge struck. Participants estimated when their intention to click first arose by monitoring a dot’s position on a clockface.
Intention to click usually preceded the action by 188 milliseconds on average, the team found. But a session of transcranial direct current stimulation, or tDCS, moved the realization of intention even earlier, stretching time out between awareness of intention and the action. tDCS electrodes delivered a mild electrical zap to participants’ heads, dialing up the activity of carefully targeted nerve cells. After stimulation, intentions arrived about 60 to 70 milliseconds sooner than usual. tDCS seemed to change certain kinds of brain activity that may have influenced the time shift, EEG recordings suggested.
The results highlight how thoughts and intentions can be separated from the action itself, a situation that appears to raise thorny questions about free will. But these tDCS zaps didn’t change the action outcome or participants’ feelings of control, only the reported timing of a person’s conscious intention.
MONTREAL — For the first time, scientists have precisely captured a map of the boisterous bang radiating from a lightning strike. The work could reveal the energies involved in powering some of nature’s flashiest light shows.
As electric current rapidly flows from a negatively charged cloud to the ground below, the lightning rapidly heats and expands the surrounding air, generating sonic shock waves. While scientists have a basic understanding of thunder’s origins, they lack a detailed picture of the physics powering the crashes and rumbles. Heliophysicist Maher Dayeh of the Southwest Research Institute in San Antonio and colleagues sparked their own lightning by firing a long, Kevlar-coated copper wire into an electrically charged cloud using a small rocket. The resulting lightning followed the conductive wire to the ground. Using 15 sensitive microphones laid out 95 meters from the strike zone, Dayeh said he and his colleagues precisely recorded the incoming sound waves. Because sound waves from higher elevations took longer to reach the microphones, the scientists could create an acoustic map of the lightning strike with “surprising detail,” Dayeh said. He presented the results May 5 at a meeting of the American Geophysical Union and other organizations.
The loudness of a thunderclap depends on the peak electric current flowing through the lightning, the researchers found. This discovery could one day allow scientists to use thunder to sound out the amount of energy powering a lightning strike, Dayeh said. SHOCK AND AWE Scientists shot a long copper wire into a lightning-prone cloud using a small rocket. The generated lightning followed the wire down to the ground, allowing the researchers to record the sound waves of the resulting thunder. The green flashes are caused by the intense heating of the copper wire. Credit: Univ. of Florida, Florida Institute of Technology, SRI
Humans have long tried to wrangle water. We’ve straightened once-meandering rivers for shipping purposes. We’ve constructed levees along rivers and lakes to protect people from flooding. We’ve erected entire cities on drained and filled-in wetlands. We’ve built dams on rivers to hoard water for later use.
“Water seems malleable, cooperative, willing to flow where we direct it,” environmental journalist Erica Gies writes in Water Always Wins. But it’s not, she argues.
Levees, which narrow channels causing water to flow higher and faster, nearly always break. Cities on former wetlands flood regularly — often catastrophically. Dams starve downstream environs of sediment needed to protect coastal areas against rising seas. Straightened streams flow faster than meandering ones, scouring away riverbed ecosystems and giving water less time to seep downward and replenish groundwater supplies.
In addition to laying out this damage done by supposed water control, Gies takes readers on a hopeful global tour of solutions to these woes. Along the way, she introduces “water detectives”— scientists, engineers, urban planners and many others who, instead of trying to control water, ask: What does water want? These water detectives have found ways to give the slippery substance the time and space it needs to trickle underground. Around Seattle’s Thornton Creek, for instance, reclaimed land now allows for regular flooding, which has rejuvenated depleted riverbed habitat and created an urban oasis. In California’s Central Valley, scientists want to find ways to shunt unpolluted stormwater into ancient, sediment-filled subsurface canyons that make ideal aquifers. Feeding groundwater supplies will in turn nourish rivers from below, helping to maintain water levels and ecosystems.
While some people are exploring new ways to manage water, others are leaning on ancestral knowledge. Without the use of hydrologic mapping tools, Indigenous peoples of the Andes have a detailed understanding of the plumbing that links surface waters with underground storage. Researchers in Peru are now studying Indigenous methods of water storage, which don’t require dams, in hopes of ensuring a steady flow of water to Lima — Peru’s populous capital that’s periodically afflicted by water scarcity. These studies may help convince those steeped in concrete-centric solutions to try something new. “Decision makers come from a culture of concrete,” Gies writes, in which dams, pipes and desalination plants are standard.
Understanding how to work with, not against, water will help humankind weather this age of drought and deluge that’s being exacerbated by climate change. Controlling water, Gies convincingly argues, is an illusion. Instead, we must learn to live within our water means because water will undoubtedly win.
If every mineral tells a story, then geologists now have their equivalent of The Arabian Nights.
For the first time, scientists have cataloged every different way that every known mineral can form and put all of that information in one place. This collection of mineral origin stories hints that Earth could have harbored life earlier than previously thought, quantifies the importance of water as the most transformative ingredient in geology, and may change how researchers look for signs of life and water on other planets. “This is just going to be an explosion,” says Robert Hazen, a mineralogist and astrobiologist at the Carnegie Institution for Science in Washington, D.C. “You can ask a thousand questions now that we couldn’t have answered before.”
For over 100 years, scientists have defined minerals in terms of “what,” focusing on their structure and chemical makeup. But that can make for an incomplete picture. For example, though all diamonds are a kind of crystalline carbon, three different diamonds might tell three different stories, Hazen says. One could have formed 5 billion years ago in a distant star, another may have been born in a meteorite impact, and a third could have been baked deep below the Earth’s crust. So Hazen and his colleagues set out to define a different approach to mineral classification. This new angle focuses on the “how” by thinking about minerals as things that evolve out of the history of life, Earth and the solar system, he and his team report July 1 in a pair of studies in American Mineralogist. The researchers defined 57 main ways that the “mineral kingdom” forms, with options ranging from condensation out of the space between stars to formation in the excrement of bats.
The information in the catalog isn’t new, but it was previously scattered throughout thousands of scientific papers. The “audacity” of their work, Hazen says, was to go through and compile it all together for the more than 5,600 known types of minerals. That makes the catalog a one-stop shop for those who want to use minerals to understand the past.
The compilation also allowed the team to take a step back and think about mineral evolution from a broader perspective. Patterns immediately popped out. One of the new studies shows that over half of all known mineral kinds form in ways that ought to have been possible on the newborn Earth. The implication: Of all the geologic environments that scientists have considered as potential crucibles for the beginning of life on Earth, most could have existed as early as 4.3 billion years ago (SN: 9/24/20). Life, therefore, may have formed almost as soon as Earth did, or at the very least, had more time to arise than scientists have thought. Rocks with traces of life date to only 3.4 billion years ago (SN: 7/26/21).
“That would be a very, very profound implication — that the potential for life is baked in at the very beginning of a planet,” says Zachary Adam, a paleobiologist at the University of Wisconsin–Madison who was not involved in the new studies.
The exact timing of when conditions ripe for life arose is based on “iffy” models, though, says Frances Westall, a geobiologist at the Center for Molecular Biophysics in Orléans, France, who was also not part of Hazen’s team. She thinks that scientists need more data before they can be sure. But, she says, “the principle is fantastic.”
The new results also show how essential water has been to making most of the minerals on Earth. Roughly 80 percent of known mineral types need H2O to form, the team reports.
“Water is just incredibly important,” Hazen says, adding that the estimate is conservative. “It may be closer to 90 percent.” Taken one way, this means that if researchers see water on a planet like Mars, they can guess that it has a rich mineral ecosystem (SN: 3/16/21). But flipping this idea may be more useful: Scientists could identify what minerals are on the Red Planet and then use the new catalog to work backward and figure out what its environment was like in the past. A group of minerals, for example, might be explainable only if there had been water, or even life.
Right now, scientists do this sort of detective work on just a few minerals at a time (SN: 5/11/20). But if researchers want to make the most of the samples collected on other planets, something more comprehensive is needed, Adam says, like the new study’s framework.
And that’s just the beginning. “The value of this [catalog] is that it’s ongoing and potentially multigenerational,” Adam says. “We can go back to it again and again and again for different kinds of questions.”
“I think we have a lot more we can do,” agrees Shaunna Morrison, a mineralogist at the Carnegie Institution and coauthor of the new studies. “We’re just scratching the surface.”
Monkeypox is not yet a global public health emergency, the World Health Organization said June 25.
The decision comes as the outbreak of the disease related to smallpox continues to spread, affecting at least 4,100 people in 46 countries as of June 24. That includes at least 201 cases in the United States. Those cases have been found in 25 states and the District of Columbia, according to the U.S. Centers for Disease Control and Prevention. “Controlling the further spread of outbreak requires intense response efforts,” and the situation should be reevaluated in a few weeks, the WHO committee evaluating the outbreak said in an announcement.
The declaration of a public health emergency would have potentially made it easier to get treatments and vaccines to people infected with or exposed to the virus. Some medications and vaccines that could help fend off monkeypox are approved for use against smallpox, and can be used against monkeypox only with special authorization.
The virus that causes monkeypox, named for its discovery in monkeys in 1958 though it is probably a virus that mainly infects rodents, is not a new threat. Countries in central Africa, where monkeypox is endemic, have had sporadic outbreaks since researchers found the first human case in 1970. Places in western Africa had few cases until 2017. But most cases outside the continent were travel-related, with limited spread to others (SN: 5/26/22).
“Monkeypox has been circulating in a number of African countries for decades and has been neglected in terms of research, attention and funding,” WHO director-general Tedros Ghebreyesus said in a statement announcing the decision. “This must change not just for monkeypox but for other neglected diseases in low-income countries as the world is reminded yet again that health is an interconnected proposition.”
Monkeypox typically kills fewer than 10 percent of people who contract it. At least one person has died in the global outbreak.
As case numbers climb, researchers are working to decipher the genetic blueprint of the virus, in hopes of uncovering whether some viral mutations might explain why the virus has quickly gained a foothold in new places.
Tracing the mutations The closest known relative of the versions of the virus behind the global outbreak comes from Nigeria, hinting that the outbreak may have got its start there.
In the newest surge in cases, scientists have uncovered more viral changes than anticipated — a sign that the virus may have been circulating undetected among people for a while, perhaps since Nigeria’s 2017–2018 monkeypox outbreak, new research suggests. What’s more, a group of enzymes known for their virus-fighting abilities in the body may be to blame for many of those mutations.
A genetic analysis of monkeypox viruses involved in the global outbreak from 15 people across seven countries shows that these viruses have an average of 50 more genetic tweaks than versions circulating in 2018 and 2019, researchers report June 24 in Nature Medicine. That’s roughly six to 12 times as many mutations as scientists would have expected the virus to develop over that time. Unlike some other types of viruses, poxviruses, which include smallpox and monkeypox viruses, typically mutate fairly slowly.
The changes have a pattern that is a hallmark of an enzyme family called APOBEC3, the researchers say. These enzymes edit DNA’s building blocks — represented by the letters G, C, A and T — in a specific way: Gs change to As and Cs to Ts. The analysis found that particular pattern in the viral sequences, suggesting that APOBEC3s are responsible for the mutations.
Ideally, so many DNA building blocks are swapped for another that a virus is effectively destroyed and can’t infect more cells. But, sometimes, APOBEC3 enzymes don’t make enough changes to knock out the virus. Such mutated, though still functional, viruses can go on to infect additional cells, and possibly another person.
A big question, though, is whether the genetic tweaks seen in the monkeypox virus are helpful, harmful or have no effect at all on the virus.
While it’s still unknown whether the enzymes are directly responsible for the changes in the monkeypox virus, similar mutations are still popping up, the team found. So, APOBEC3s may still be helping the virus change as it continues to spread. One member of the enzyme family is found in skin cells, where people with monkeypox can develop infectious pox lesions. Different symptoms Symptoms reported in the global outbreak have been generally milder than those reported in previous outbreaks, perhaps allowing the disease to spread before a person knows they’re infected.
It is not clear whether those differences in symptoms are related to changes in the virus, Inger Damon, director of the CDC’s Division of High-Consequence Pathogens and Pathology, said June 21 in a news briefing hosted by SciLine, a service for journalists and scientists sponsored by the American Association for the Advancement of Science.
Typically, in previous outbreaks, people would develop flu-like symptoms, including fever, headaches, muscle aches and exhaustion about a week or two after exposure to the virus. Then, one to three days after those symptoms start, a rash including large pus-filled lesions pops up generally starting on the face and limbs, particularly the hands, and spreads over the body. Though generally milder, those symptoms are similar to smallpox, but people with monkeypox also tend to develop swollen lymph nodes.
All patients in the U.S. outbreak have gotten rashes, Damon said, “but the lesions have been scattered or localized to a specific body site, rather than diffuse, and have not generally involved the face or the … palms of the hand or the soles of the feet.” Instead, rashes may start in the genital or anal area where they can be mistaken for sexually transmitted diseases, such as syphilis or herpes, she said.
In many cases, the rashes have not spread to other parts of the body. And the classical early symptoms such as fever have been “mild and sometimes nonexistent before a rash appears,” Damon said.
Monkeypox is transmitted from person to person through close skin-to-skin contact or by contact with contaminated towels, clothes or bedding. It may also be spread by droplets of saliva exchanged during kissing or other intimate contact. The CDC is investigating whether the virus might be spread by semen as well as skin-to-skin contact during sex, Agam Rao, a captain in the U.S. Public Health Service, said June 23 at a meeting of the CDC’s Advisory Committee on Immunization Practices.
“We don’t have any reason to suspect it is spread any other way,” such as through the air, Rao said.
In Nigeria, more monkeypox cases have been recorded among women, while the global outbreak has affected mainly men, particularly men who have sex with men. Experts warn that anyone can be infected with monkeypox, and some people face an increased risk of severe disease. Those at increased risk include children, people who are immunocompromised, pregnant people and people with eczema.
The risk of catching monkeypox through casual contact is still low in the United States, Rao said. But data she presented show that while people in the country have contracted monkeypox while traveling abroad, cases have also spread locally.
At the time, Conover was a Ph.D. student in particle physics (she’s now physics senior writer for Science News). She was part of a team building a detector in the cavern to observe elusive particles called neutrinos. It was the Fourth of July 2012. A few hundred kilometers away, scientists were announcing the discovery of another elusive subatomic particle, the Higgs boson, which physicists had been hunting for decades. As hundreds of researchers cheered in the main auditorium at the CERN particle physics lab near Geneva, Conover and the small group of physicists in the chilly French cavern cheered too, as did scientists worldwide. The Higgs boson filled in a missing piece in the standard model of particle physics, which explains just about everything known about the particles that make up atoms and transmit the forces of nature. No Higgs boson, no life as we know it.
In this issue’s cover story, “The Higgs boson at 10,” Conover looks back at the excitement around the discovery of the Higgs boson and looks ahead to the many things that researchers hope to find out with its help. She also reviews a new biography of Peter Higgs, a modest man who made clear that he was just one of many scientists who contributed to the breakthrough.
The discovery is part of Science News history too. Journalists around the world were eagerly awaiting the big announcement, which was being kept under wraps. But when Kate Travis, a Science News editor at the time, uncovered an announcement video accidentally posted early on CERN’s website, we published the big news the day before the official announcement.
“Even though its discovery is 10 years old now, that’s still new in the grand scheme of particle physics, so we’re still learning lots about it,” Conover told me. “It’s very cool that I get the opportunity to write about this particle that is still so new to science.” And it’s very cool that we get to explore it with her.