To douse hot hives, honeybee colonies launch water squadrons

When a honeybee colony gets hot and bothered, the crisis sets tongues wagging. Middle-aged bees stick their tongues into the mouths of their elders, launching these special drinker bees to go collect water. That’s just one detail uncovered during a new study of how a colony superorganism cools in hot weather.

Using lightbulbs to make heat waves in beehives, researchers have traced how honeybees communicate about collecting water and work together in deploying it as air-conditioning. The tests show just how important water is for protecting a colony from overheating, Thomas Seeley of Cornell University and his colleagues report online July 20 in the Journal of Experimental Biology.
Water collection is an aspect of bee biology that we know little about, says insect physiologist Sue Nicolson of the University of Pretoria in South Africa. Collecting pollen and nectar have gotten more attention, perhaps because honeybees store them. Water mostly gets picked up as needed.

Bees often get as much water as they need in the nectar they sip. But they do need extra water at times, such as during overheating in the center of the nest where eggs and young are coddled. When researchers artificially heated that zone in two colonies confined in a greenhouse, worker bees fought back. They used their wings to fan hot air out of the hive. “You can put your hand in the opening of a hive on a hot day and feel the blast of air that’s being pushed out,” Seeley says. Several hundred bees also moved out of the nest to cluster in a beardlike mass nearby. Their evacuation reduces body heat within the nest and opens up passageways for greater airflow, he says.

The bees also had a Plan C — evaporative cooling. Middle-aged bees inside a hive walked toward the nest entrance to where a small number of elderly bees, less than 1 percent of the colony, hang out and wait until water is needed. Heat by itself doesn’t activate these bees, especially since they’re not in the overheating core. Seeley now proposes that the burst of middle-aged bees’ repeated begging for water by tongue extension eventually sends the water-collecting bees into action. They return carrying some 80 percent of their weight in water. “The water carrier comes in looking really fat, and the water receivers start out looking very skinny,” Seeley says. “Over a minute when the transfer takes place, their forms reverse.” Then the receiving bees go to the hot zone, regurgitate their load of water and use their tongues to spread it over the fevered surfaces.

In a water-deprivation experiment, bees prevented from gathering water could not prevent temperatures from rising dangerously, up to 44° Celsius, in their hive. When researchers permitted water-collector squadrons to tank up again, colonies could control temperatures. Even for multitalented bees, water is necessary for cooling, the researchers conclude.

After a severe heat stress, the researchers noticed some bees with plumped-up abdomens hanging inside the colony. “Sometime they would be lined up like bottles of beer in the refrigerator,” Seeley says. Bottled beverages is what they were, he argues, storing water and remaining available if the coming night proved as water-stressed as the day.

“Honeybees continue to amaze,” says Dennis vanEngelsdorp of the University of Maryland in College Park, who studies bee health. “Even after centuries of study, we have something new.”

Lizard mom’s microbiome may protect her eggs

COLUMBIA, Mo. — Human babies born via cesarean section miss out on an opportunity to pick up beneficial microbes that other babies get when they take a trip through mom’s vagina. And even though the scientific jury’s still out on whether this is a good idea, some parents have been wiping their C-section babies down with vaginal fluid in the hopes that their newborns might get some of those microbial benefits, Laura Sanders reported earlier this yearover at the Growth Curve blog.

Microbial transfer from mom to offspring happens in a lot of species, but researchers are more familiar with how species that give live birth do this than those that lay eggs, biologist Stacey Weiss of the University of Puget Sound in Tacoma, Wash., noted August 1 at the 53rd Annual Conference of the Animal Behavior Society. Researchers have found that moms can transfer microbes right into the egg itself before it is laid or onto or near the egg after laying.

But Weiss thinks that such microbial transfer might happen through another route — as eggs travel through a female animal’s cloaca. (The cloaca is a combination of genital tract and end of the digestive system found in many invertebrates and most vertebrates, except most mammals.) She and her colleagues have been studying whether striped plateau lizard moms transfer microbes that protect their eggs from pathogens.

“Pathogenic infection is one of the leading causes of egg mortality,” she said. And some studies have proposed that microbes might be able to protect against those infections. None have yet proposed that the source of the microbes could be the cloaca, but this might be a common source since “all vertebrate eggs go through cloacas, and all cloacas have microbes,” she said.

Weiss latched onto the idea that microbes from the cloaca might be important after noticing that when she obtained eggs through dissection, they tended to have a lower survival rate than eggs that were laid. The dissected eggs often succumbed to fungal infections, while the laid eggs did not.

She and her team started by comparing the microbiomes of male and female lizards’ cloacas. “Females are different than males,” she said. Males had more diverse microbial communities in their cloacas. Females were missing whole categories of microbes found in males and had one type that is known to have antifungal activity.

The researchers then compared the microbiomes of eggs that were laid with those that had been dissected out. The team is still waiting on the results of DNA tests that will tell them exactly what kinds of microbes are found on the eggs, but initial results showed that the laid eggs are more likely to have any bacteria at all. “There’s something about going through the cloaca that is increasing bacterial load on these eggshells,” Weiss said. Fungi, though, showed up only on eggs that had been obtained through dissection.
Weiss, her colleagues and some high school students then performed tests in which fungus was applied directly to eggs. They found that laid eggs were able to inhibit fungal growth while dissected eggs were not. So it appears that the mom’s cloaca microbiome may indeed be providing some protection for her offspring.

Weiss said that these results, while still preliminary, may help expand what parental protection of offspring means. In species without direct parental care, transfer of microbes might be an important way that moms and dads help to keep their offspring safe.

Rock hounds are on the hunt for new carbon minerals

Like many abandoned mines, the Eureka uranium mine in northern Spain is a maze of long, dank tunnels. Water seeping down the walls carries dissolved substances that percolated through rocks overhead. As the water evaporates into the tunnels’ cool air, some of those dissolved ingredients combine to make new substances in solid form.

“The mine is a crystallization factory of weird minerals,” says Jordi Ibáñez-Insa, a physicist at the Institute of Earth Sciences Jaume Almera in Barcelona.
Including the uranium-bearing ores that attracted miners to Eureka in the first place, scientists visiting the mine have cataloged 61 different minerals — solids that have a distinct chemical recipe and arrangement of atoms. The latest find, called abellaite, is a rarity that grows in small pincushions of tiny crystalline needles about 40 to 50 micrometers long. Discovered in July 2010, the mineral has been found only on the walls of a 3-meter-long stretch of one tunnel, says Ibáñez-Insa.

Abellaite is uncommon in another sense: It contains carbon. Of the 5,161 minerals characterized by scientists and recognized by the International Mineralogical Association, just 8 percent, or 416, include carbon.

The Carbon Mineral Challenge, launched last December and running until September 2019, exhorts researchers to scour the landscape — and their museum drawers — for unknown carbon-bearing minerals. In a recent analysis, scientists estimate that there are at least 548 carbon minerals on Earth. That means well over 100 are waiting to be noticed.

The analysis, published in the April American Mineralogist, even provides clues about where scientists and rock hounds should look and what recipes and atomic arrangements such minerals might have.
The hunt for carbon minerals is much more than stamp (or rock) collecting. The challenge aims to identify minerals that could help tell the story of the planet’s carbon and water cycles — past and present. Besides having a specific recipe and structure, minerals form only in certain conditions (on Earth and elsewhere), making them keen chroniclers of the environments that existed at the time and place they formed, as well as the conditions since then.

A census of minerals
A few minerals are, forgive the phrase, as common as dirt. Of the more than 5,000 recognized minerals, about 100 have been reported by geologists and amateur collectors at more than 1,000 sites worldwide. Many more are very rare: At least 1,000 minerals have been found in only one locale, says Robert Hazen, a geophysicist at the Carnegie Institution for Science in Washington, D.C. More than half of the world’s minerals have been found at five or fewer locations.

Not every mineral on Earth has been discovered, of course. But by analyzing a massive database of known minerals and how common or rare they are, scientists can use a standard statistical tool to estimate the number of minerals yet to be uncovered. Hazen and his colleagues suggest in the August 2015 issue of Mathematical Geosciences that there are at least 1,500 undiscovered minerals out there. About 140 of those minerals contain carbon, the team predicted in the follow-on analysis published in April.

Both professional mineralogists and amateur collectors can participate in the Carbon Mineral Challenge, but any potential discoveries have to survive the strict screening process of the International Mineralogical Association, which Ibáñez-Insa and a raft of colleagues navigated for abellaite. (The mineral was approved in December 2015.) The researchers submitted a portfolio of data — the sample’s appearance, chemical makeup, arrangement of atoms, color, hardness, transparency, fluorescence, a proposed name and more — to the IMA’s Commission on New Minerals, Nomenclature and Classification.

Promising places
In the search for hidden carbon-bearing minerals, scientists and rock hounds aspiring to geologic fame should visit these locales (or analyze samples already collected there).

Tap the map to explore carbon mineral “hot spots” around the world.
A few dozen new minerals are recognized each year, says Hans-Peter Schertl, a mineralogist at Ruhr University in Bochum, Germany, and an IMA officer. Approval can be straightforward, or it can drag out for months or longer, especially if additional data are required, Schertl says. One strict requirement is that a sample be natural, not lab-made or a result of human interference. Thus, any unusual crystals that grow on the surfaces of rocks that were pulled from a mine and then dumped nearby and exposed to the elements wouldn’t qualify as a mineral, he notes, “Those would just be pretty crystals.”

Oddly, the “natural sample” requirement long prevented official recognition of what is purported to be the most common mineral on Earth. Bridgmanite, an iron- and magnesium-rich silicate, received the IMA seal of approval only in 2014 (SN: 1/10/15, p. 4). Estimated to make up a whopping 38 percent of the planet’s volume, bridgmanite can exist only at the high pressures found between 660 and 2,900 kilometers below Earth’s surface — too deep to dig up. Scientists had long studied lab-made samples but hadn’t found a natural bit of the mineral until earlier this decade in a meteorite that landed in Australia in 1879.

Where to look
In their analysis published in April, Hazen and colleagues included general recipes for a variety of Earth’s yet-to-be-discovered carbon minerals. One formula — a complex mix of sodium, lead and carbonate and hydroxyl ions, written scientifically as NaPb2(CO3)2(OH) — matches abellaite from the Spanish mine. Bingo. One more carbon mineral in the bag.

Many of those “missing” minerals will be very similar to known forms, with combinations that differ by only a single element — swapping out a magnesium atom for a calcium atom in the recipe for a known mineral, for example, or a sodium atom for a potassium atom.

“The chemical formula tells you a lot about the conditions that a mineral forms in,” says Daniel Hummer, a geochemist at Southern Illinois University in Carbondale and lead scientist for the Carbon Mineral Challenge. It also suggests that existing minerals that have a very similar formula can, in many cases, serve as a guide for what the missing minerals might look like, in terms of the colors or shapes of their crystals.

In fact, similarities could be so strong that a mineral might be overlooked because it looks so much like a known, or even common, mineral. “It’s possible that some of these missing minerals are hiding in plain sight,” Hummer notes.

If not camouflaged, some carbon minerals may simply be so scarce that they’ve never been encountered. In June in American Mineralogist, Hazen and environmental scientist Jesse Ausubel of Rockefeller University in New York City discuss several reasons why minerals can be rare — so rare, in fact, that the entire world’s supply might fit into a thimble, Hazen says.

First, a mineral might form or remain stable only in extremely unusual combinations of temperature, pressure and pH. The mineral hatrurite (Ca3SiO5), for example, forms only at temperatures above 1,250° Celsius and only in the absence of aluminum, the third most common element in Earth’s crust. Hatrurite was first found in Israel, in an ancient limestone deposit that was probably exposed to intense heat generated when hydrocarbons in nearby sediments burned.

Second, a mineral might include chemical elements that are rare to begin with and even rarer in combination. Examples include swedenborgite (which contains the scarce combination of beryllium and antimony) and any mineral that includes tellurium, which on average is found in Earth’s crust at concentrations of 5 parts per billion.

Third, a mineral may be exceptionally ephemeral. Some are so hygroscopic, or humidity-absorbing, that they pull moisture from the air and dissolve themselves, Hazen says. Hygroscopic minerals have to be collected or observed in the field as they form and before they disappear. Then there are the minerals that form in conditions so remote or harsh that scientists hardly ever get near them (think deep-sea hydrothermal vents or active volcanoes).

Some minerals present more than one of these challenges. Consider fingerite, Cu11O2(VO4)6, an unstable shiny black mineral that forms only at high temperatures and includes the rare combination of copper and vanadium. This exceedingly rare mineral is known only from samples recovered from rocks near heat-belching fissures and holes atop El Salvador’s Izalco volcano.

There are less hostile places to search for new minerals, though. Fourteen sites worldwide, including mines, have each given up 20 or more carbon minerals, Hazen says. Scientists could revisit those 14 sites and look for more unrecognized minerals, he notes. Or they could simply take a closer look at or perform additional tests on samples already collected from such locales.
Or researchers could target areas where ephemeral minerals could be expected to form, if ever so briefly. For example, calcium carbide — a substance produced on an industrial scale to create acetylene for miner’s lamps — reacts so quickly with water that it hasn’t been found in a natural setting. But small, short-lived quantities might be produced when lightning strikes near rocks containing both limestone and coal (admittedly, a pretty hostile situation).

There’s no reason to be limited by the 14 promising locations. Scientists found the yellowish-white crystals of tinnunculite (C5H4N4O3•2H2O), mineral just recognized in December, in an unexpected milieu: inside the residue of bird poop that had landed on extremely hot rocks overlying an underground coal fire in northwestern Russia. The elevated temperatures drive the crystallization of uric acid in the excrement, the researchers say.

The exotic mineral was dubbed tinnunculite to honor the European kestrel (Falco tinnunculus), whose indispensable contribution to mineralogy cannot be denied.

For his part, Ibáñez-Insa plans to spend more time at Spain’s Eureka mine. Although the site’s uranium ores are no longer worth extracting, scientific treasures akin to abellaite may still lie undiscovered. “I’m pretty sure,” he says, “we’ll find some more new minerals there.”
This article appears in the October 15, 2016, issue of Science News with the headline, “Digging Carbon: A new challenge has scientists searching for dozens of unknown, beguiling crystals.”

Tweaking how plants manage a crisis boosts photosynthesis

Enhancing just three genes helps plants harvest more light, raising new hopes for developing crops that can keep up with food demands from a crowded planet.

Genetically engineered tobacco plants, chosen to test the concept, managed the unusual feat of growing 14 to 20 percent more mass — meaning more crop yield — than untweaked plants, says Krishna Niyogi of the University of California, Berkeley and Lawrence Berkeley National Laboratory. The gains came from inserting different versions of three genes that control how quickly plants ramp back up to full energy-harvesting capacity after going into a protective mode to protect themselves from too-bright sunlight, researchers report in the Nov. 18 Science.
Among results published so far, “to my knowledge, this is the first example where crop growth has been enhanced by improving photosynthesis,” says plant physiologist John Evans at Australian National University in Canberra, who wasn’t part of the new project.

Photosynthesis, the basic green chemistry for converting the sun’s energy into food, isn’t a perfectly efficient process (SN: 2/20/16, p. 12). And the quest to improve efficiency by manipulating the interlocking steps of more than 100 reactions in living crops has been complex. “We can make things worse, but this is the first time we can make something better,” Evans says.

The underlying idea for the tobacco experiment came from an appreciation of how light and shade dance over leaves throughout the day in a farm field. Sudden blasts of intense sunlight are dangerous stuff; an overload can lead to chemical scorching in a plant’s light-catching chloroplasts. So when the sun’s movement or a toss from a breeze suddenly exposes a chloroplast to more sunlight than it can handle, a protection system kicks in.
Enzymes in the leaf create a surge of a paprika-colored molecule called zeaxanthin, which helps offload the excess energy as heat. This protection turns on within minutes, but turns off more slowly when the crisis is over, Niyogi says.
Restoring full photosynthesis takes a lot more than just enhancing the back-to-normal mechanisms. An enzyme called ZEP dismantles protective zeaxanthin when it’s no longer needed. But making the plant simply build more ZEP keeps the protective system from turning on properly in the first place — which could put a plant at risk. So researchers also enhanced the enzyme called VDE that builds the protective zeaxanthin. With those two enzymes in balance, a chloroplast can still rid itself of excess energy but get back to full operations faster.
Enhancing a third protein, PsbS, also helped, although researchers don’t yet understand the full details of how. Tobacco plants with modified versions of all three proteins grew bigger, as measured by the weight of dried plant material, than others.

The extra growth those genes produced “is a major, economically important gain,” says Maureen Hanson of Cornell University, who is working on a different approach to improving photosynthesis. Now, she says, the new paper’s idea is ready for attempted transfer to plants that people harvest for grains or fruits. Hanson is hopeful that size will increase there, too.

Coaxing plants to calm down faster after a crisis is just one strategy to make photosynthesis more efficient. Evans and Hanson are among those involved in efforts to improve a notoriously slow and distractible photosynthetic enzyme called Rubisco (SN Online: 9/19/14). Other researchers are trying to transfer a naturally more efficient photosynthetic system found in some tropical and subtropical plants, called C4 photosynthesis, into rice, one of the world’s main grains.

Older strategies for wringing more food from farms are not on track to keep up with soaring human population and food demands, Niyogi says. The United Nation’s Food and Agriculture Organization has estimated that feeding the world in 2050 could require boosting food production by an additional 70 percent. But the success of all of this, Niyogi notes, may depend on how people around the world feel about genetically engineered food.

Readers ponder hominid hookups and more

Nuts about Neandertals
Recent genetic analyses of populations around the world showed that a wave of ancient humans left Africa about 50,000 to 72,000 years ago. All non-Africans alive today originated from this single wave, Tina Hesman Saey reported in “One Africa exodus populated globe” (SN: 10/15/16, p. 6).

“If the Neandertals were already present when Homo sapiens arrived on the scene, from whence did the N­eandertals originate, and how did they get there ahead of the (true) humans?” Peter Goodwin asked.
“Neandertals didn’t race ahead of humans out of Africa,” Saey says. Some earlier ancestor of both modern humans and Neandertals migrated out of the continent long before either species came on the scene. “Neandertals evolved outside of Africa, possibly from Homo heidelbergensis. They ‘grew up’ in Europe and Southwest Asia and were already present when humans started to venture out of Africa” she says.

But once human ancestors ventured into new territories, they met up and mated with Neandertals and other hominids, Bruce Bower says. Scientists are studying physical changes in the bodies of various animal hybrids to understand signs of this ancient interbreeding, Bower reported in “The hybrid factor” (SN: 10/15/16, p. 22).

Online reader Mark S. wondered if hybridization could explain the similarities between even older hominids like Homo naledi and Australopithecus, which have collarbones and finger bones in common (SN: 5/14/16, p. 12).

Biological anthropologist Rebecca Ackermann of the University of Cape Town in South Africa suspects hybridization helped shape the a­natomy of H. naledi and other ancient hominid species, Bower says. But no DNA has been extracted from H. naledi fossils to explore that possibility. DNA from Spanish fo­ssils does suggest that Neandertals and Denisovans may have interbred more than 430,000 years ago (SN Online: 3/14/16).
Quantum leap through time
Researchers teleported quantum particles over long distances in Canada and China. The feats could lay the groundwork for a quantum internet, Emily Conover reported in “New steps toward quantum internet” (SN: 10/15/16, p. 13).

“Is there any chance that quantum communication could send messages to the past or future … information time travel?” online reader J Ferris asked.

“Unfortunately, quantum mechanics does not allow faster-than-light c­ommunication — although it seems like it could at first blush,” Conover says. Through entanglement, quantum particles appear to remotely affect one another instantaneously. But to transmit or receive actual information, other details about the me­asurement must be sent through normal light-speed channels. “That’s a good thing,” she says. “If faster-than-light communication were possible, communication back in time would be too, which would cause all kinds of weird paradoxes. You could talk to your parents before you were born and perhaps convince them not to have children.”

Failure to launch
A star that vanished in 2009 may be the first confirmed case of a failed supernova. A faint infrared light and a black hole are all that remain of NGC 6946, Christopher Crockett reported in “Lost star may be failed supernova” (SN: 10/15/16, p. 8).

Jan Steinman wondered if the star’s collapse released enough gravitational energy for scientists to detect it using the Advanced Laser Interferometer Gravitational-Wave Observatory, or LIGO, which confirmed the existence of gravitational waves earlier this year.

Failed supernovas indeed produce gravitational waves detectable by LIGO, Crockett says. However, the waves are generated at the heart of stellar explosions, regardless of whether or not those explosions “fail” and collapse into black holes. It would be difficult to tell the difference between a supernova and a failed one from the gravitational waves alone, says Fermilab’s James Annis.

Hidden Figures highlights three black women who were vital to the U.S. space program

Hollywood space flicks typically feature one type of hero: astronauts who defy the odds to soar into space and back again. But now a group of behind-the-scenes heroes from the early days of the U.S. space program are getting their due. Black female mathematicians performed essential calculations to safely send astronauts to and from Earth’s surface — in defiance of flagrant racism and sexism.

These “computers” — as they were known before the electronic computer came into widespread use — are the subject of Hidden Figures. The film focuses on three black women — Katherine Johnson (played by Taraji P. Henson), Dorothy Vaughan (Octavia Spencer) and Mary Jackson (Janelle Monáe) — and their work at NASA’s Langley Research Center in Hampton, Va., during the run-up to John Glenn’s orbit of the Earth in 1962.
A mathematics virtuoso, Katherine Johnson calculated or verified the flight trajectories for many of the nation’s space milestones. The film showcases her work on two: the first American in space (Alan Shepard), and the first American to orbit the Earth (John Glenn). But Johnson also had a hand in sending the first men to the moon, during the Apollo 11 mission, and when the Apollo 13 astronauts ran into trouble, Johnson worked on the calculations that helped them get home safely.

Mary Jackson worked on wind tunnel experiments at Langley, where she tested how spacecraft performed under high winds. The film follows Jackson as she overcomes obstacles of the Jim Crow era to become NASA’s first black female engineer. Though the movie focuses on her triumphant rise, after decades in that role, Jackson grew frustrated with the remaining glass ceilings and moved into an administrative role, helping women and minorities to advance their careers at NASA.
Johnson and Jackson got their start under the leadership of Dorothy Vaughan, who led the segregated group of “colored computers,” assigning black women to assist with calculations in various departments. As electronic computers became more essential Vaughan recognized their importance and became an expert programmer. A scene where she surreptitiously takes a book from whites-only section of a public library — a guide to the computing language FORTRAN — is a nod to Vaughan’s prowess with the language.
Electronic computers were so unfamiliar in the 1960s that everyone from engineers to astronauts felt more confident when a human computer calculated the numbers. After a room-sized IBM mainframe spits out figures for his trajectory, John Glenn requests, “Get the girl to check the numbers” — meaning Johnson. In the film, that request culminates in Johnson running a frantic last-minute check of the numbers and sprinting across the Langley campus while Glenn waits. In reality, that process took a day and a half.

For spaceflight fans, Hidden Figures provides an opportunity to be immersed in a neglected perspective. The women’s stories are uplifting, their resilience impressive and their retorts in response to those who underestimate them, witty.

But viewers should be aware that, although the main facts underpinning the plot are correct, liberties have been taken. Some of the NASA higher-ups in the film — including Johnson’s supervisor Al Harrison (Kevin Costner) — are not real people. And presumably because number crunching tends to be a bit thin in the suspense department, the filmmakers have dramatized some scenes — Johnson is pictured in Mission Control during Glenn’s flight, but in reality she watched it on television — which seems a shame because the contributions of these women don’t need to be exaggerated to sound momentous.

Pain promoter also acts as pain reliever

A protein that sounds the alarm when the body encounters something painful also helps put out the fire.

Called Nav1.7, the protein sits on pain-sensing nerves and has long been known for sending a red alert to the brain when the body has a brush with pain. Now, experiments in rodent cells reveal another role for Nav1.7: Its activity triggers the production of pain-relieving molecules. The study, published online January 10 in Science Signaling, suggests a new approach to pain management that takes advantage of this protein’s dual role.
“This is very interesting research,” says neuroscientist Munmun Chattopadhyay of Texas Tech University Health Sciences Center El Paso. The findings suggest that when opiates are given for certain kinds of pain relief, also targeting Nav1.7 might lessen the need for those pain relievers, Chattopadhyay says. That could reduce opiate use and their associated side effects.

The new research also solves a puzzle that has frustrated researchers and pharmaceutical companies alike. People with rare mutations in the gene for making Nav1.7 feel no pain at all. That discovery, made more than a decade ago, suggested that Nav1.7 was an ideal target for controlling pain. If a drug could block Nav1.7 activity, some kinds of pain might be eradicated (SN: 6/30/12, p 22). Yet drugs designed to do just that didn’t wipe out people’s pain.

“It seemed so obvious and simple,” says study leader Tim Hucho, a neuroscientist at the University Hospital Cologne in Germany. “But it was not so simple.”

Then in 2015, researchers reported that mice and people with nonfunctioning Nav1.7 not only felt no pain, but they also made higher than normal levels of pain-relieving opioids naturally produced by the body. When these researchers, led by John Wood of University College London, gave the opiate-blocker naloxone to a woman with the rare pain-eradicating mutation, she felt pain for the first time.

“It was astonishing,” says Hucho, whose collaborators on the new research include Wood.
Pain-sensing proteins like Nav1.7 work by prompting nerve cells to send electrical signals. But in this case, Nav1.7 was influencing a nonelectrical process — it was somehow cranking up the activity of genes in charge of making in-house opioids. “It turned the whole field upside down,” Hucho says.

An investigation of rat and mice nerve cells reveals the tug-of-war between Nav1.7’s pain-promoting and pain-relieving powers. Cells with nonfunctioning Nav1.7 have amped up activity in the cellular machinery that kicks off pain relief, Hucho and colleagues report. They suggest that Nav1.7 acts like the axis point in a playground seesaw. When the pain-promoting side is dialed down, the pain-relieving side becomes more dialed up than usual, and cells make more of their in-house opioids.

When opiates are given for pain, the body typically gets used to them and increasing amounts of the drugs are required to have an effect. Yet in the experiments with the rodent cells, this desensitization didn’t happen. The cellular machinery that interacts with the body’s homemade opioids remained sensitive to the pain relievers, even with the uptick in their production.

Taken together, the results suggest that rather than trying to push down on one side of the seesaw to stop pain, a better approach might be moving the axis at the seesaw’s center, says Hucho, tipping the scales toward in-house opioid production, while also dialing down pain promotion. The experimental design by Hucho and University Hospital Cologne colleague Jörg Isensee will make it much easier to explore how manipulations might tip the balance, the researchers say. Much more research is needed before the finding will translate into treating pain in people, but it hints at a new strategy: Rather than trying to stop pain via opiates alone, pain relief might come when such drugs are taken with a Nav1.7 blocker.

Frog slime protein fights off the flu

The next flu drug could come from frog mucus. It’s not as crazy as it sounds: For decades, scientists have searched for new antiviral drugs by mining proteins that animals produce to protect themselves from microbes. In lab tests, proteins found in amphibian secretions can defend against HIV, herpes and now the flu.

David Holthausen of Emory University in Atlanta and colleagues sampled slime from the skin of Hydrophylax bahuvistara, a recently discovered frog species from southern India. They tested the influenza-fighting ability of 32 slime peptides. Four showed promise, but three proved toxic to mammals.
The fourth peptide, however, was safe and showed a propensity for fighting off the flu. When exposed to four H3N2 and eight H1N1 strains, this peptide, dubbed urumin, inhibited H3N2 viruses to a degree but was particularly adept at killing H1N1 viruses, which are more common among humans. The frog slime protein even cut viral numbers in a set of seven drug-resistant strains and protected mice during flu infections. Urumin blows up flu virus particles by targeting the stalk region of the hemagglutinin protein in H1 varieties, the team found. With further development, urumin could form the basis of future influenza drugs, the researchers write in the April 18 Immunity.

A baby’s DNA may kick off mom’s preeclampsia

A protein made by the fetus may lead to preeclampsia in moms.

People born to mothers who had the prenatal disorder were more likely to have certain DNA variations near a gene known to influence blood vessels. The results, published online June 19 in Nature Genetics, point to that gene as a possible preeclampsia culprit, and may help scientists develop ways to stop or prevent the pregnancy complication. Preeclampsia, which is marked by a dangerous spike in blood pressure, affects about 5 percent of pregnancies and is estimated to kill over 70,000 women a year globally.
Scientists have known that preeclampsia can run in families, but the genetics of the fetus hadn’t been scrutinized. “Over the years, people have looked at mothers’ genes,” says geneticist Linda Morgan of the University of Nottingham in England. “This is the first large study to look at babies’ genes.”

Morgan and colleagues compared DNA variations in 2,658 babies, children and adults born to mothers who had preeclampsia with those in more than 300,000 people. (This large group probably included some people born to mothers with the condition, but the vast majority were not.)

A genome-wide association study (GWAS), a technique used to comb through DNA looking for genetic variations that may be linked to a disorder, pinpointed a spot on chromosome 13, near a gene called FLT1. That gene is involved with blood vessel formation, an intricate process for the placenta as it grows into the inside wall of the uterus and merges the baby’s blood supply to the mother’s. The same genetic hot spot turned up in tests of a second group of offspring from mothers who had preeclampsia, Morgan and colleagues report. Another DNA variation near the gene also showed a link to the disorder.

Identifying FLT1 “makes a lot of sense,” says Ananth Karumanchi, a vascular biologist at Beth Israel Deaconess Medical Center in Boston, who was not involved in the study. Earlier experiments by Karumanchi and others suggest that the gene plays a role in preeclampsia.

Preeclampsia is kicked off by the placenta, an organ grown mostly from fetal cells that helps provide nutrients to the fetus. And though the details are unclear, some scientists suspect that unhealthy placentas start to pump out too much Flt-1 protein. A version of the protein called sFlt-1 can then slip into a mother’s bloodstream, where it may damage blood vessels in a way that leads to high blood pressure.
The GWAS results can’t explain the bulk of preeclampsia cases. A fetus carrying a single copy of one of the troublesome variants near FLT1 raised a mother’s risk of preeclampsia by about 20 percent, the analysis suggests. Other risk factors are known to be much stronger, Morgan says, including previous high blood pressure, former preeclampsia diagnoses or carrying twins.

Karumanchi says that the genetic results might not be strong enough on their own to make the case that the gene is involved. But other work points to FLT1. “We feel it’s the right target,” he says.

In Europe, a preliminary clinical trial is testing a filtration method that removes excess sFlt-1 protein from the blood of women with signs of preeclampsia. So far, about 20 women have undergone the procedure, says nephrologist Ravi Thadhani of Massachusetts General Hospital in Boston. Early results are “quite encouraging,” he says, and he hopes to expand the study soon.