Gut bacteria may guard against diabetes that comes with aging

Losing one variety of gut bacteria may lead to type 2 diabetes as people age.

Old mice have less Akkermansia muciniphila bacteria than young mice do, researchers report November 14 in Science Translational Medicine. That loss triggers inflammation, which eventually leads cells to ignore signals from the hormone insulin. Such disregard for insulin’s message to take in glucose is known as insulin resistance and is a hallmark of type 2 diabetes.

Researchers have suspected that bacteria and other microbes in the gut are involved in aging, but how the microbes influence the process hasn’t been clear. Monica Bodogai of the U.S. National Institute on Aging in Baltimore and colleagues examined what happens to mice’s gut bacteria as the rodents age. The mice lose A. muciniphila, also called Akk, and other friendly microbes that help break down dietary fiber into short-chain fatty acids, such as butyrate and acetate. Those fatty acids signal bacteria and human cells to perform certain functions.
Losing Akk led to less butyrate production, Bodogai’s team found. In turn, loss of butyrate triggered a chain reaction of immune cell dysfunction that ended with mice’s cells ignoring the insulin.

Treating old mice and elderly rhesus macaques with an antibiotic called enrofloxacin increased the abundance of Akk in the animals’ guts and made cells respond to insulin again. Giving old animals butyrate had the same effect, suggesting that there may be multiple ways to head off insulin resistance in older people in the future.

Humans wiped out mosquitoes (in one small lab test)

For the first time, humans have built a set of pushy, destructive genes that infiltrated small populations of mosquitoes and drove them to extinction.

But before dancing sleeveless in the streets, let’s be clear. This extermination occurred in a lab in mosquito populations with less of the crazy genetic diversity that an extinction scheme would face in the wild. The new gene drive, constructed to speed the spread of a damaging genetic tweak to virtually all offspring, is a long way from practical use. Yet this test and other news from 2018 feed one of humankind’s most persistent dreams: wiping mosquitoes off the face of the Earth.

For the lab-based annihilation, medical geneticist Andrea Crisanti and colleagues at Imperial College London focused on one of the main malaria-spreading mosquitoes, Anopheles gambiae. The mosquitoes thrive in much of sub-Saharan Africa, where more than 400,000 people a year die from malaria, about 90 percent of the global total of malaria deaths.

To crash the lab population, the researchers put together genes for a molecular copy-and-paste tool called a CRISPR/Cas9 gene drive. The gene drive, which in this case targeted a mosquito gene called doublesex, is a pushy cheat. It copies itself into any normal doublesex gene it encounters, so that all eggs and sperm will carry the gene drive into the next generations. Female progeny with two altered doublesex genes develop more like males and, to people’s delight, can’t bite or reproduce.

In the test, researchers set up two enclosures, each mixing 150 males carrying the saboteur genes into a group of 450 normal mosquitoes, males and females. Extinction occurred in eight generations in one of the enclosures and in 12 in the other (SN: 10/27/18, p. 6).

This is the first time that a gene drive has forced a mosquito population to breed itself down to zero, says Omar Akbari of the University of California, San Diego, who has worked on other gene drives. However, he warns, “I believe resistance will be an issue in larger, diverse populations.” More variety in mosquito genes means more chances of some genetic quirk arising that counters the attacking gene drive.

But what if a gene drive could monkey-wrench a wild population, or maybe a whole species, all the way to extinction? Should people release such a thing? To make sense of this question, we humans will have to stop talking about “mosquitoes” as if they’re all alike. The more than 3,000 species vary considerably in what they bite and what ecosystem chores they do.

The big, iridescent adults of Toxorhynchites rutilus, for instance, can’t even drink blood. And snowmelt mosquitoes (Ochlerotatus communis) are pollinators of the blunt-leaved orchid (Platanthera obtusata), ecologist Ryo Okubo of the University of Washington in Seattle said at the 2018 meeting of the Society for Integrative and Comparative Biology.
Estimating what difference it would make ecologically if a whole mosquito species disappeared has stirred up plenty of speculation but not much data. “I got pretty fed up with the hand-waving,” says insect ecologist Tilly Collins of Imperial College London. So she and colleagues dug through existing literature to see what eats An. gambiae and whether other mosquitoes would flourish should their competitor vanish.

So far, extermination of this particular mosquito doesn’t look like an ecological catastrophe, Collins says. Prey information is far from perfect, but diets suggest that other kinds of mosquitoes could compensate for the loss. The species doesn’t seem to be any great prize anyway. “As adults, they are small, not juicy, and hard to catch,” she says. The little larvae, built like aquatic caterpillars with bulging “shoulders” just behind their heads, live mostly in small, temporary spots of water.
The closest the researchers came to finding a predator that might depend heavily on this particular mosquito was the little East African jumping spider Evarcha culicivora. It catches An. gambiae for about a third of its diet and likes the females fattened with a human blood meal. Yet even this connoisseur “will readily consume” an alternative mosquito species, the researchers noted in July in Medical and Veterinary Entomology.

Collins also thinks about the alternatives to using genetically engineered pests as pest controls. Her personal hunch is that saddling mosquitoes with gene drives to take down their own species is “likely to have fewer ecological risks than broad-spectrum use of pesticides that also kill other species and the beneficial insects.”

Gene drives aren’t the only choice for weaponizing live mosquitoes against their own kind. To pick just one example, a test this year using drones to spread radiation-sterilized male mosquitoes in Brazil improved the chances that the old radiation approach will be turned against an Aedes mosquito that can spread Zika, yellow fever and chikungunya.

Old ideas, oddly enough, may turn out to be an advantage for antimosquito technologies in this era of white-hot genetic innovation. Coaxing the various kinds of gene drives to work is hard enough, but getting citizens to sign off on their use may be even harder.

Green darner dragonflies migrate a bit like monarch butterflies

The monarch butterfly isn’t the only insect flying up and down North America in a mind-boggling annual migration. Tests show a big, shimmering dragonfly takes at least three generations to make one year’s migratory loop.

Ecologist Michael Hallworth and his colleagues pieced together the migration of the common green darner, described December 19 in Biology Letters, using data on forms of hydrogen in the insects’ wings, plus records of first arrivals spotted by citizen scientists.
The study reveals that a first generation of insects emerges in the southern United States, Mexico and the Caribbean from about February to May and migrates north. Some of those Anax junius reach New England and the upper Midwest as early as March, says Hallworth, of the Smithsonian Migratory Bird Center headquartered in Washington, D.C.

Those spring migrant darners lay eggs in ponds and other quiet waters in the north and eventually die in the region. This new generation migrates south from about July until late October, though they have never seen where they’re heading. Some of these darners fly south in the same year their parents arrived and some the next year, after overwintering as nymphs.

A third generation emerges around November and lives entirely in the south during winter. It’s their offspring that start the cycle again by swarming northward as temperatures warm in the spring. With a wingspan as wide as a hand, they devote their whole lives to flying hundreds of kilometers to repeat a journey their great-grandparents made.
Scientists knew that these dragonflies migrated. Dragonfly enthusiasts have spotted swarms of the green darners in spring and in fall. But which generations were doing what has been tricky to demonstrate. “Going in, we didn’t know what to expect,” Hallworth says.
Tracking devices that let researchers record animals’ movements for more than a week or two haven’t been miniaturized enough to help. The smallest still weigh about 0.3 grams, which would just about double a darner’s weight, Hallworth says. So researchers turned to chemical clues in darner tissues. Conservation biologist and study coauthor Kent McFarland succeeded at the delicate diplomacy of persuading museums to break off a pinhead-sized wing tip fragment from specimens spanning 140 years.

Researchers checked 800 museum and live-caught specimens for the proportion of a rare heavy form of hydrogen that occurs naturally. Dragonfly wings pick up their particular mix of hydrogen forms from the water where the aquatic youngsters grow up. Scientists have noticed that a form called hydrogen-2 grows rarer along a gradient from south to north in North America. Looking at a particular wing in the analysis, “I can’t give you a zip code” for a darner, Hallworth says. But he can tell the native southerners from Yankees.

An adult darner, regardless of where it was born, is “a green piece of lightning,” says McFarland, of the Vermont Center for Ecostudies in White River Junction. Darners maneuver fast enough to snap insect prey out of the air around ponds across North America. The front of an adult’s large head is “all eye,” he says, and trying to catch samples for the study was “like hitting a knuckleball.”

Although the darners’ north-south migration story is similar to that of monarchs (Danaus plexippus), there are differences, says evolutionary biologist Hugh Dingle of the University of California, Davis, who has long studied these butterflies. Monarchs move northward in the spring in stepwise generations, instead of one generation sweeping all the way to the top of its range.

Also, Dingle says, pockets of monarchs can buck the overall scheme. Research suggests that some of the monarchs in the upper Midwest do a whole round trip migration in a single generation. As researchers discover more details about green darners, he predicts, the current basic migration scheme will turn out to have its quirky exceptions, too.

Saber-toothed cats were fierce and family-oriented

The adolescent saber-toothed cat on a summertime hunt realized too late that she had made a terrible miscalculation.

Already the size of a modern-day tiger, with huge canine teeth, she had crept across grassy terrain to ambush a giant ground sloth bellowing in distress. Ready to pounce, the cat’s front paw sank into sticky ground. Pressing down with her other three paws to free herself, then struggling in what has been called “tar pit aerobics,” she became irrevocably mired alongside her prey.

Scenarios much like this played out repeatedly over at least the last 35,000 years at California’s Rancho La Brea tar pits. Entrapped herbivores, such as the sloth, attracted scavengers and predators — including dire wolves, vultures and saber-toothed Smilodon cats — to what looked like an easy meal. Eventually the animals would disappear into the muck, until paleontologists plucked their fossils from the ground in huge numbers over the last century.

Five million or so fossils have been found at the site. But “it’s not like there was this orgy of death going on,” says Christopher Shaw, a paleontologist and former collections manager at the La Brea Tar Pits and Museum in Los Angeles. He calculates that such an entrapment scenario, dooming 10 or so large mammals and birds, would have needed to occur only once per decade over 35,000 years to account for that bounty of fossils.

At La Brea, the collection of Smilodon fatalis fossils alone includes more than 166,000 bones, from an estimated 3,000 of the ill-fated prehistoric cats. Famed for their fearsome canines, which grew up to 18 centimeters long, S. fatalis weighed as much as 280 kilograms, bigger than most of today’s largest lions and tigers.
Fossils of S. fatalis, the second largest of three Smilodon species that roamed the Americas during the Pleistocene Epoch, have been found across the United States and in South America, west of the Andes as far south as Chile. And a recent study put S. fatalis in Alberta, Canada, about 1,000 kilometers north of its previously known range.

But the La Brea fossil site, unique in offering up so many specimens, is the source of the vast majority of knowledge about the species. There, fossils of dire wolves and saber-toothed cats together outnumber herbivores about 9-to-1, leading scientists to speculate that both predators may have formed prides or packs, similar to modern lions and wolves. Yet a small number of experts argue against cooperative behavior for Smilodon, reasoning that pack-living animals would have been too intelligent to get mired en masse.
New studies may help settle the debate about Smilodon’s sociality, and answer questions about how the cat lived and why it died out 10,000 to 12,000 years ago.

“We have an innate curiosity to understand what it was doing and why it went extinct,” says Larisa DeSantis, a vertebrate paleontologist at Vanderbilt University in Nashville. Now, she says, “we can answer these questions.”

DeSantis is studying microscopic wear on fossil teeth and chemical signatures in the enamel to reveal Smilodon’s diet. Other scientists are doing biomechanical studies of the skull, fangs and limbs to understand how the powerful cat captured and killed its prey. Some researchers are extracting DNA from fossils, while others are gathering data on the paleoclimate to try to piece together why Smilodon died out.

“It’s the T. rex of mammals … a big, scary predator,” says Ashley Reynolds, a paleontology Ph.D. student and fossil cat researcher at the University of Toronto. She presented the Alberta fossil find in October in Albuquerque at the Society of Vertebrate Paleontology conference. Explaining why Smilodon cats continue to excite researchers, she says, “They’re probably the baddest of all the cats that have ever existed.”
Safety in numbers
Whether Smilodon was a pack hunter has long been debated (SN: 10/28/17, p. 5) because living in groups is rare among large cats today. But an unusual number of healed injuries in the Smilodon bones at La Brea makes it unlikely that these cats were solitary, DeSantis and Shaw reported in November in Indianapolis at a meeting of the Geological Society of America.

More than 5,000 of the Smilodon bones at La Brea have marks of injury or illness: tooth decay, heavily worn arthritic joints, broken legs and dislocated elbows that would have occurred before the animals’ tar burial. Dramatic examples include crushed chests and spinal injuries, which the cats somehow survived. “You would actually wince to see these horribly, traumatically injured specimens,” says Shaw, who is also coeditor of the 2018 book Smilodon: The Iconic Sabertooth.

One particularly debilitating injury was a crippled pelvis, but evidence of new bone growth shows that the animal lived long enough for healing to occur. “There was a lot of infection, pain and smelly stuff, and just a really awful situation for this animal, but it survived well over a year,” Shaw says. “To me that indicates [the injured cat] was part of a group that helped it survive by letting it feed at kills and protecting it.”

Shaw and DeSantis looked at a series of specimens with what were probably agonizing maladies in the teeth and jaws, including fractured canines and massive infections that left animals with misshapen skulls.

“These animals probably couldn’t have gone out … to kill anything,” Shaw says. “You know how it is when you have a toothache. This is like that times 100.”
DeSantis compared microscopic pits and scratches on the surface of the teeth of injured animals with microwear on the teeth of seemingly healthy Smilodon cats. The injured cats’ dental surfaces indicated that the animals were eating softer foods, which would have been less painful to chew, “likely a higher proportion of flesh, fat and organs, as opposed to bone,” she says.

The findings are consistent with the interpretation that Smilodon was a group-living animal, she says, and that the cats “allowed each other access to food when [injured pack members] couldn’t necessarily take down their own prey.”

Reynolds agrees that the healed injuries are persuasive evidence that Smilodon lived in groups. “When you see an animal with really nasty injuries that healed somehow, it does make you wonder if they were cared for.”

Not everyone is convinced, however. Ecologist Christian Kiffner of the Center for Wildlife Management Studies in Karatu, Tanzania, has studied modern carnivores such as African lions and spotted hyenas. “Relatively long survival of Smilodon fatalis individuals after dental injuries had occurred does not necessarily provide airtight evidence for a specific social system in this species,” he says. “It is very, very difficult to use patterns in Pleistocene carnivore [fossil] assemblages to make inferences about behavior of an extinct species.”

Even if the saber-toothed cats did live in groups, the animals’ exact social structure remains an open question, Reynolds says. Modern lion prides have numerous females and several younger males led by an alpha male, with intense competition between male lions. As a result, males are much bigger than females, as the males must work hard to defend their positions.

Despite searching, scientists have not found obvious evidence of a size difference between the sexes in Smilodon; researchers can’t even tell which La Brea fossils are male or female. Size differences between the sexes, if they existed, may have been small.

“That lack of sexual dimorphism is odd,” says Blaire Van Valkenburgh, a UCLA paleontologist who studies fossil carnivores. Sex-related size differences are seen in many big cats today, most particularly lions. She thinks the lack of sexual dimorphism in Smilodon might hint at a different social structure. Perhaps males weren’t competing quite so intensely for access to females. Maybe there was no single alpha male preventing the majority of males from making a move.

Family affair
Perhaps Smilodon groups had an alpha female rather than an alpha male, or an alpha pair. Such is the case in modern wolves and coyotes, which have less pronounced size differences between sexes than lions do. The prehistoric cats “could have had extended family structures [similar to wolves] where uncles and aunts hung around, because it probably took a while to raise the young saber-toothed cats,” Van Valkenburgh suspects.

Kittens may have taken a long time, as long as 22 months, to get most of their adult teeth, she says. The upper canines took even longer, as much as three years or more, to reach their massive size, researchers reported in PLOS ONE in 2015. Modern lions, in contrast, typically have all of their adult teeth by 17 months, Van Valkenburgh says.

Smilodon kittens also probably went through a substantial learning curve before attempting to take down large prey. “It took longer for them to learn how to safely kill something without breaking their teeth or biting in the wrong place and hurting themselves,” Van Valkenburgh speculates.

Pack living would enable this slower development: “If you’re a social species, you can afford to grow at a slower rate than a nonsocial species because you have a family safety net,” Reynolds says. She is studying Smilodon fossils from Peru’s Talara tar pits for evidence of slow bone development using bone histology, examining thin cross sections under a microscope to determine such things as age and growth rate.
To understand how saber-toothed cats eventually took down prey, Van Valkenburgh joined paleobiologist Borja Figueirido of the University of Málaga in Spain and others. The group studied the biomechanics of Smilodon’s killing bite and how the animal used its sabers. That work, published in the October 22, 2018 Current Biology, adds to a consensus that the cat used its powerful forelimbs, which existed even in the youngsters (SN Online: 9/27/17), to pin prey before applying a lethal bite to the neck.

“The specialization of being a saber-toothed appears to have been partly to effectively take prey larger than yourself and to do that very quickly,” Van Valkenburgh says. With the prey tightly gripped, a Smilodon cat would position itself so that one or two really strong canine bites would rip open the pinned animal’s throat.

In contrast, lions suffocate prey — one lion may clamp its jaws around the neck, crushing the windpipe, while another uses its mouth to cover the victim’s nose and mouth. Using this slower method would have increased Smilodon’s chances of injuring or damaging those precious canine teeth.

Diverging senses
Smilodon and its extinct saber-toothed relatives are on a branch of the cat family tree that is far from today’s cats. Scientists think Smilodon’s branch diverged from the ancestors of all living cats about 20 million years ago. Given the evolutionary distance, researchers are still trying to determine how similar — or different — Smilodon was from its living feline cousins. A recent focus has been the cat’s sounds and senses.

At the October vertebrate paleontology conference, Shaw presented evidence that Smilodon may have roared, as do lions, tigers, leopards and their close relatives. The clues come from 150 La Brea fossils that were once part of the hyoid arch, or larynx, in the Smilodon throat. (Tar pits stand out for preserving tiny bones rarely found elsewhere.) The small fossils are very similar in shape and style to those of roaring cats. House cats and others that purr have a different arrangement of bones.
Smilodon may have “used this type of communication as an integral part of social behavior,” Shaw says. Roaring, however, is not a sure sign of pack living, Reynolds notes; most roaring cats today do not live in large groups.

How Smilodon’s sense of smell compared with living cats’ is something else researchers wonder about. To probe this part of the extinct animal’s biology, a team lead by Van Valkenburgh looked at Smilodon’s cribriform plate — a small, perforated bone inside the skull. Smell-sensing nerve cells pass through holes in the plate from the olfactory receptors in the nose to the brain. The size and number of holes are thought to correlate with the number of receptors and, therefore, the extent of an animal’s sense of smell.

To confirm this link, Van Valkenburgh’s team combined CT scans and 3-D images of skulls from 27 species of living mammals with information on the number of olfactory receptor genes. A CT scan of a skull revealed that Smilodon may have had slightly fewer olfactory receptor nerve cells than a domestic cat, the researchers reported at the paleontology conference. Smilodon’s sense of smell was perhaps 10 to 20 percent less keen than a modern lion’s, says Van Valkenburgh, whose team reported the findings in the March 14, 2018 Proceedings of the Royal Society B.

Smilodon “might have relied more heavily on their eyes and their ears,” she says. Perhaps, in an ancient evolutionary divergence, Smilodon’s level of reliance on smell went in a slightly different direction than in modern big cats.

Saber-toothed swan song
As the pieces of the Smilodon puzzle fall into place, perhaps the biggest remaining mystery is why the animal disappeared 10,000 to 12,000 years ago. Debate about the extinction of some of North America’s large mammal species swings between blaming humans and climate change (SN: 11/10/18, p. 28). While humans, who probably arrived on the continent more than 15,000 years ago, and Smilodon certainly knew one another in the Americas, they may not have overlapped at La Brea, Shaw says. The earliest evidence of people in the Los Angeles Basin is about 11,000 years ago, by which time Smilodon may or may not already have gone. Nevertheless, human hunting of large prey elsewhere in the Americas could have led to a scarcity of food for the big cats, he says.

One theory holds that Smilodon went through tough times at La Brea when lack of prey forced the saber-toothed cats to consume entire carcasses including bones. This has been posited as the reason for all those broken teeth among the La Brea fossils. But DeSantis isn’t convinced; she thinks breakages happened during scuffles with prey. She says dental microwear suggests that Smilodon was not eating great quantities of bone.
Some opportunistic carnivores, such as cougars, did eat bone and managed to survive to the modern day. Perhaps Smilodon couldn’t adapt to hunting smaller prey when larger herbivores disappeared, also around 10,000 to 12,000 years ago (SN: 11/24/18, p. 22).

“A lot of the large prey on the landscape go extinct,” DeSantis says. “You lose out on the horses, camels, giant ground sloths, mammoths and mastodon. That’s got to have had an impact.”

The challenge of dating fossils from the tar pits has been one hurdle to understanding exactly what was going on with Smilodon over time. Bones deposited over many thousands of years get jumbled by movement in the tar, for reasons experts don’t fully understand. Plus, the tar itself becomes embedded in each specimen, complicating carbon dating.

However, new methods of chemically pretreating fossils to remove the tar have made carbon dating much easier and cheaper — and a multi-institutional project is now dating hundreds of Smilodon and other bones. Researchers will soon be able to track changes in Smilodon over the 35,000 years of prehistory recorded at La Brea and correlate fossil changes to known changes in climate over that time.

“We’re going to have a much better handle,” Van Valkenburgh says, “on what was going on towards the end of their existence.”

This article appears in the March 30, 2019 issue of Science News with the headline, “The Baddest Cat of All: Fresh details say saber-toothed Smilodon helped injured pack members.”

Mathematicians may have found the fastest way to multiply huge numbers

Multiplying 2 x 2 is easy. But multiplying two numbers with more than a billion digits each — that takes some serious computation.

The multiplication technique taught in grade school may be simple, but for really big numbers, it’s too slow to be useful. Now, two mathematicians say that they’ve found the fastest way yet to multiply extremely large figures.

The duo claim to have achieved an ultimate speed limit for multiplication, first suggested nearly 50 years ago. That feat, described online March 18 at the document archive HAL, has not yet passed the gauntlet of peer review. But if the technique holds up to scrutiny, it could prove to be the fastest possible way of multiplying whole numbers, or integers.
If you ask an average person what mathematicians do, “they say, ‘Oh, they sit in their office multiplying big numbers together,’” jokes study coauthor David Harvey of the University of New South Wales in Sydney. “For me, it’s actually true.”

When making calculations with exorbitantly large numbers, the most important measure of speed is how quickly the number of operations needed — and hence the time required to do the calculation — grows as you multiply longer and longer strings of digits.

That growth is expressed in terms of n, defined as the number of digits in the numbers being multiplied. For the new technique, the number of operations required is proportional to n times the logarithm of n, expressed as O(n log n) in mathematical lingo. That means that, if you double the number of digits, the number of operations required will increase a bit faster, more than doubling the time the calculation takes.
But, unlike simpler methods of multiplication, the time needed doesn’t quadruple, or otherwise rapidly blow up, as the number of digits creeps up, report Harvey and Joris van der Hoeven of the French national research agency CNRS and École Polytechnique in Palaiseau. That slower growth rate makes products of bigger numbers more manageable to calculate.

The previously predicted max speed for multiplication was O(n log n), meaning the new result meets that expected limit. Although it’s possible an even speedier technique might one day be found, most mathematicians think this is as fast as multiplication can get.

“I was very much astonished that it had been done,” says theoretical computer scientist Martin Fürer of Penn State. He discovered another multiplication speedup in 2007, but gave up on making further improvements. “It seemed quite hopeless to me.”

The new technique comes with a caveat: It won’t be faster than competing methods unless you’re multiplying outrageously huge numbers. But it’s unclear exactly how big those numbers have to be for the technique to win out — or if it’s even possible to multiply such big numbers in the real world.

In the new study, the researchers considered only numbers with more than roughly 10214857091104455251940635045059417341952 digits when written in binary, in which numbers are encoded with a sequence of 0s and 1s. But the scientists didn’t actually perform any of these massive multiplications, because that’s vastly more digits than the number of atoms in the universe. That means there’s no way to do calculations like that on a computer, because there aren’t enough atoms to even represent such huge numbers, much less multiply them together. Instead, the mathematicians came up with a technique that they could prove theoretically would be speedier than other methods, at least for these large quantities.

There’s still a possibility that the method could be shown to work for smaller, but still large, numbers. That could possibly lead to practical uses, Fürer says. Multiplication of these colossal numbers is useful for certain detailed calculations, such as finding new prime numbers with millions of digits (SN Online: 1/5/18) or calculating pi to extreme precision (SN Online: 12/10/02).

Even if the method is not widely useful, making headway on a problem as fundamental as multiplication is still a mighty achievement. “Multiplying numbers is something people have been working on for a while,” says mathematical physicist John Baez of the University of California, Riverside. “It’s a big deal, just because of that.”

The new CDC guidelines may make back-to-school harder

Across the United States, kids are prepping for back-to-school, or are already in classrooms, and parents are buckling up for another pandemic school year. Like me, many are trying to get a handle on what COVID-19 precautions to take. Updated guidance released last week by the U.S. Centers for Disease Control and Prevention hasn’t exactly helped. It may have made dealing with back-to-school more confusing — and could even spur new outbreaks.

Last November, my fifth grader had to quarantine at home for 10 days after a close contact tested positive. Now, the CDC has nixed the quarantine recommendation for people exposed to COVID-19. Today, our situation could look something like this: My COVID-exposed daughter would mask for 10 days, test on day five, and remain in school the whole time — only the infected child would isolate. That child would stay home for at least five days after a positive test. Then, if the child is fever-free and symptoms are improving, according to the new guidance, they could pop on a mask and hightail it back to class — no testing needed.
That advice could mean more COVID-19 in classrooms. Scientists have shown that people can remain infectious after day five. So without testing for COVID-19, students and teachers won’t know if they’re bringing the disease back to school.

On the same day the CDC’s guidance came out, the U.S. Food and Drug Administration added yet another wrinkle. If you think you’ve been exposed to COVID-19 but test negative with an at-home COVID-19 antigen test, the FDA now recommends testing again … and again. Repeat testing over time cuts the chances you’ll miss an infection and unknowingly spread the virus, the FDA advised on August 11.

It’s hard to say how that advice jibes with the CDC’s new, more-relaxed guidelines. Even the agency has said its public guidance during the pandemic has been “confusing and overwhelming,” the New York Times reports. CDC director Rochelle Walensky is now planning a shake-up that could include restructuring the communications office as well as relying more on preliminary studies rather tha
The CDC’s new guidance has sparked a range of reactions, many negative, among scientists, doctors, parents and teachers. In an informal Twitter poll of Science News followers, roughly 80 percent of the 353 respondents reported that the new CDC guidance made them feel confused, worried or angry and/or exasperated.

Now, it’s up to local school districts to decide what COVID-19 measures to take. “Just because guidance has changed does not mean COVID is gone,” Becky Pringle, president of the National Education Association labor union, said in a statement. Not by a long shot. The United States is currently averaging nearly 500 daily coronavirus deaths and more than 100,000 new cases a day, an almost certain undercount.

As my own children gear up for school, I wonder about COVID-19’s constantly shifting landscape. Like other families with school-aged children, we’ve bounced from virtual school to in-person mask mandates to mask-optional recommendations. And we still don’t know our district’s plans for the upcoming year. School starts in about a week.

There is reason for hope, though: We know what measures can slow COVID-19’s spread in schools. Masking is a big one. A preliminary study posted August 9 linked lifting school mask mandates in Boston-area K–12 schools with a rise in cases among students and staff. At Boston University, mandatory masking plus a vaccine mandate seemed to keep the virus in check in classrooms, scientists reported August 5 in JAMA Network Open. Testing can help, too. A computer analysis from England suggests that regularly rapid testing students can curb classroom transmission, scientists report August 10 in the Royal Society Open Science.
But knowing what works is not the same as actually employing evidence-based measures in the classroom, says Anne Sosin, a public health researcher at Dartmouth College whose research focuses on COVID-19 and rural health equity. She has studied how pandemic policies have impacted schools in northern New England. “I worry that we simply have not seen the political leadership to ensure that all children and educators can safely participate in school.”

I spoke with Sosin about the CDC’s new guidance, and what kids and parents might expect heading into the new school year. Our conversation has been edited for length and clarity.

SN: What do you think of the updated guidance?

Sosin: I was very disappointed that the CDC did not adopt a test-to-exit-isolation recommendation.

What we’re going to see in schools are infected students and educators returning after five days still positive for COVID-19. Multiple studies have demonstrated that most people are infectious beyond five days. Not only is it highly likely that they’ll be seeding outbreaks. They’ll also be putting high-risk members of school communities in danger.

SN: What could the guidance mean for vulnerable kids?

Sosin: I think that vulnerable people are going to be in a very precarious situation. The guidance mentions the need to ensure protections for immunocompromised and other high-risk people but there’s a problem of implementation. Will schools actually implement those protections?

SN: Do scientists have a good handle on what protections can help?

Sosin: Definitely. We have really strong evidence showing that when layered mitigation strategies are in place, we can almost eliminate transmission in school settings. That means that we should have upgraded ventilation, lunchroom strategies [like taking kids outside to eat] and testing. And I continue to think that data-driven mask policies have a role to play. Not masking forever, but masking at times when we see an uptick in transmission.

SN: How could the new guidance affect different communities across the United States?

Sosin: Different communities have not only been impacted in dramatically different ways, but they’re also on unequal footing at this stage of the pandemic.

[If we compare white communities with communities of color], we see disparities in vaccination coverage and caregiver loss. Some communities have suffered enormous losses while others have really been untouched. Black children have lost caregivers at more than two times the rate of white children. For Indigenous children, the rate is 4.5 times as high. Those are sharp disparities.

Communities of color also have less access to testing, treatment and health care. I worry that if we don’t have a renewed focus on equity, then we’re just going to see an exacerbation of disparities that have existed throughout the pandemic.

SN: What advice do you have for parents as they head into the new school year?

Sosin: We all want as normal a school year as possible. Masking should be one of the tools we’re ready to employ to keep our kids in the classroom. In addition, we should be advocating that our schools invest in ventilation. Vaccination also represents a critical piece of the strategy.

We see such abysmal vaccination coverage among children. Less than 1 in 3 kids ages 5 to 11 are fully vaccinated. I think many parents no longer see it as important — there’s been this narrative that the pandemic is over. We need clear messaging that vaccination remains an important tool.

Now is a great time to plan back-to-school campaigns to vaccinate kids and to begin to prepare for the arrival of omicron-specific boosters in the fall.

‘The Five-Million-Year Odyssey’ reveals how migration shaped humankind

Archaeologist Peter Bellwood’s academic odyssey wended from England to teaching posts halfway around the world, first in New Zealand and then in Australia. For more than 50 years, he has studied how humans settled islands from Southeast Asia to Polynesia.

So it’s fitting that his new book, a plain-English summary of what’s known and what’s not about the evolution of humans and our ancestors, emphasizes movement. In The Five-Million-Year Odyssey, Bellwood examines a parade of species in the human evolutionary family — he collectively refers to them as hominins, whereas some others (including Science News) use the term hominids (SN: 9/15/21) — and tracks their migrations across land and sea. He marshals evidence indicating that hominids in motion continually shifted the direction of biological and cultural evolution.
Throughout his tour, Bellwood presents his own take on contested topics. But when available evidence leaves a debate unresolved, he says so. Consider the earliest hominids. Species from at least 4.4 million years ago or more whose hominid status is controversial, such as Ardipithecus ramidus, get a brief mention. Bellwood renders no verdict on whether those finds come from early hominids or ancient apes. He focuses instead on African australopithecines, a set of upright but partly apelike species thought to have included populations that evolved into members of our own genus, Homo, around 2.5 million to 3 million years ago. Bellwood hammers home the point that stone-tool making by the last australopithecines, the first Homo groups or both contributed to the evolution of bigger brains in our ancestors.

The action speeds up when Homo erectus becomes the first known hominid to leave Africa, roughly 2 million years ago. Questions remain, Bellwood writes, about how many such migrations occurred and whether this humanlike species reached distant islands such as Flores in Indonesia, perhaps giving rise to small hominids called hobbits, or Homo floresiensis (SN: 3/30/16). What’s clear is that H. erectus groups journeyed across mainland Asia and at least as far as the Indonesian island of Java.

Intercontinental migrations flourished after Homo sapiens debuted, around 300,000 years ago in Africa. Bellwood regards H. sapiens, Neandertals and Denisovans as distinct species that interbred in certain parts of Asia and Europe. He suggests that Neandertals disappeared around 40,000 years ago as they mated with members of more numerous H. sapiens populations, leaving a genetic legacy in people today. But he does not address an opposing argument that different Homo populations at this time, including Neandertals, were too closely related to have been separate species and that it was intermittent mating among these mobile groups that drove the evolution of present-day humans (SN: 6/5/21).

Bellwood gives considerable attention to the rise of food production and domestication in Europe and Asia after around 9,000 years ago. He builds on an argument, derived from his 2004 book First Farmers, that expanding populations of early cultivators migrated to new lands in such great numbers that they spread major language families with them. For instance, farmers in what’s now Turkey spread Indo-European languages into much of Europe sometime after roughly 8,000 years ago, Bellwood contends.

He rejects a recent alternative proposal, based on ancient DNA evidence, that horse-riding herders of Central Asia’s Yamnaya culture brought their traditions and Indo-European tongues to Europe around 5,000 years ago (SN: 11/15/17). Too few Yamnaya immigrated to impose a new language on European communities, Bellwood says. Similarly, he argues, ancient Eurasian conquerors, from Alexander the Great to Roman emperors, couldn’t get speakers of regional languages to adopt new ones spoken by their outnumbered military masters.

Bellwood rounds out his evolutionary odyssey with a reconstruction of how early agricultural populations expanded through East Asia and beyond, to Australia, a string of Pacific islands and the Americas. Between about 4,000 and 750 years ago, for instance, sea-faring farmers spread Austronesian languages from southern China and Taiwan to Madagascar in the west and Polynesia in the east. Precisely how they accomplished that remarkable feat remains a puzzle.

Disappointingly, Bellwood doesn’t weigh in on a recent archaeological argument that ancient societies were more flexible and complex than long assumed (SN: 11/9/21). On the plus side, his evolutionary odyssey moves along at a brisk pace and, like our ancestors, covers a lot of ground.

An award-winning photo captures a ‘zombie’ fungus erupting from a fly

Sometimes a photo is literally a matter of life, death — and zombies.

This haunting image, winner of the 2022 BMC Ecology and Evolution photography competition, certainly fits that description. It captures the fruiting bodies of a parasitic fungus, emerging from the lifeless body of an infected fly in the Peruvian rainforest.

The fungus-infested fly was one of many images submitted to the contest from all over the world, aiming to showcase the beauty of the natural world and the challenges it faces. The journal revealed the winners August 18.
Roberto García-Roa, a conservation photographer and evolutionary biologist at the University of Valencia in Spain, took the winning photo while visiting the Tambopata National Reserve, a protected habitat in the Amazon.

The fungus erupting from the fly belongs to the genus Ophiocordyceps, a diverse collection of parasitic fungi known as “zombie fungi,” due to their ability to infect insects and control their minds (SN: 7/17/19).

“There is still much to unravel about the diversity of these fungi as it is likely that each insect species infected succumbs to its own, specialized fungus,” says Charissa de Bekker, an expert in parasitic fungi at Utrecht University in the Netherlands.

First, spores of the fungus land on the ill-fated fly. So begins the manipulative endgame. The spores infiltrate the fly’s exoskeleton before infecting its body and eventually hijacking its mind. Once in control, the fungus uses its new powers of locomotion to relocate to a microclimate more suitable to its own growth — somewhere with the right temperature, light and moisture.

Fungus and fly then bide their time until the fly dies, becoming a food source for the fungus to consume. Fruiting bodies work their way out of the fly, filled with spores that are released into the air to continue the macabre cycle in a new, unsuspecting host. It is a “conquest shaped by thousands of years of evolution,” García-Roa said in a statement announcing the winners.

Research into the molecular aspects of fungal mind control is under way, De Bekker says, including in her own lab. “These fungi harbor all sorts of bioactive chemicals that we have yet to characterize and that could have novel medicinal and pest control applications.”