Problem-solving insights enable new technologies

Fire was one of our ancient ancestors’ first forays into technology. Controlled burns enabled early hominids to ward off cold, cook and better preserve game. New evidence places fire-making in Europe as early as 800,000 years ago, much earlier than previously thought and closer to scientists’ best estimate for hominids’ first use of fire, about 1 million years ago in Africa.

It’s unclear how early Homo species came to master fire, but it was perhaps an attempt at problem solving — capturing a natural phenomenon and harnessing it for use. That tradition has persisted in human cultures. It thrives today among scientists, especially those engaged in problem solving related to society’s most pressing issues.
Take drug addiction, a vexing problem that has grown in urgency in the last decade as more and more people have become dependent on opioids — not only street drugs like heroin but also prescription pain meds like OxyContin and fentanyl. Opioids can be extremely difficult to give up because of their strong addictive pull. So scientists are trying to develop vaccines that would block the effects of heroin and other drugs of abuse, as Susan Gaidos reports. Eliciting a strong immune response, researchers theorize, could stop the drug from reaching the brain, preventing the high that fuels addiction. Success with such biotechnology, now being tested only in lab animals, would offer hope to many battling to stay off drugs.

Another modern scourge is terrorism, and anthropologists like Scott Atran have been exploring the psychological and cultural factors that drive some individuals to extreme acts of violence. There is no technology to prevent people from committing such acts — at least not yet. Basic explorations must always precede any practical use of new knowledge: Hominids could not use fire until they understood its nature and limits — which things burn, which do not; water and sand douse flame, oil and fat fuel it. Mapping terrorism’s contours is just a beginning on a long journey toward developing tactics for undercutting its power.

So it is with many other reports in this issue about basic explorations that may well precede the birth of new technologies. A few favorites:

A report on insights into how the microbial denizens of the gut influence weight gain and obesity. Scientists have now revealed a molecule made by microbes that sends a signal to the brain, influencing fat storage and appetite.

An intriguing study of mice with genetic mutations similar to those found in some people with autism. The findings suggest a role in the disorder for nerve cells involved with touch, as well as a new way to think about autism that may one day identify a target for novel therapies and interventions.

News of a second detection of gravitational waves from LIGO. It’s less dramatic and showy than the first black hole merger detection, announced in February. But it is nonetheless a further sign that a new era, one in which astronomers probe the heavens by watching for violent if subtle wakes in the fabric of spacetime, is upon us.

Rewarding stimulation boosts immune system

Feeling good may help the body fight germs, experiments on mice suggest. When activated, nerve cells that help signal reward also boost the mice’s immune systems, scientists report July 4 in Nature Medicine. The study links positive feelings to a supercharged immune system, results that may partially explain the placebo effect.

Scientists artificially dialed up the activity of nerve cells in the ventral tegmental area — a part of the brain thought to help dole out rewarding feelings. This activation had a big effect on the mice’s immune systems, Tamar Ben-Shaanan of Technion-Israel Institute of Technology in Haifa and colleagues found.

A day after the nerve cells in the ventral tegmental area were activated, mice were infected with E. coli bacteria. Later tests revealed that mice with artificially activated nerve cells had less E. coli in their bodies than mice without the nerve cell activation. Certain immune cells seemed to be ramped up, too. Monocytes and macrophages were more powerful E. coli killers after the nerve cell activation.

If a similar effect is found in people, the results may offer a biological explanation for how positive thinking can influence health.

New dwarf planet discovered lurking beyond Neptune

The family of known dwarf planets orbiting the sun just got a new member. The tiny world, designated 2015 RR245, lives in the Kuiper belt, the icy debris field beyond Neptune that’s home to Pluto. RR245 is currently about 9.6 billion kilometers from the sun, or roughly 64 times as far as Earth, and it loops around the sun on an elongated orbit every 700 years or so.

Astronomers first noticed RR245 in February as a drifting speck of light in images taken last September at the Canada-France-Hawaii telescope in Hawaii. The planet’s size is hard to determine without knowing how reflective its surface is; it could be large and dark or tiny and bright. But if its surface is similar to other worlds in the Kuiper belt, then RR245 might be about 700 kilometers wide, just one-fifth the diameter of the moon.

Zika epidemic peaking in Latin America

Zika should soon run its course in Latin America.

Within the next couple of years, the epidemic that has battered the region since 2015 will largely be over, researchers estimate in a paper online July 14 in Science.

“If we’re not past the peak already, we’re very close to it,” says study coauthor Neil Ferguson of Imperial College London. After this outbreak winds down, it may be a decade ­— at least — before another large-scale Zika epidemic hits the region.
The new timeline could help vaccine researchers get a jump on future outbreaks, and might make health officials rethink advice to pregnant women trying to avoid Zika-related birth defects. Ferguson’s work also suggests something counterintuitive: Current efforts to kill Zika-carrying mosquitoes might actually make it easier for the virus to reemerge.

“It’s an important and timely analysis,” says infectious disease researcher Oliver Pybus of the University of Oxford. “Policy makers would be wise to read it carefully.”

Brazil reported the first cases of Zika in May 2015. Since then, the mosquito-borne virus has spread to 48 countries. Scientists have now widely accepted Zika as a cause of microcephaly, a devastating birth defect that leaves babies with shrunken heads and brains, as well as other serious problems (SN Online: 6/28/16).

Scientists and health officials have hustled to fight Zika, but they’ve had trouble keeping up. Mosquito-control efforts haven’t helped much, says Ferguson, and a safe and effective vaccine could still be years away. What’s more, advice to postpone pregnancy isn’t always realistic, he says.

Predicting the epidemic’s course could refine current Zika-fighting strategies.
Ferguson and colleagues made a computer simulation of Zika transmission within Latin America, using data from 35 countries that have reported cases. The team factored in such variables as seasonal climate variation, the ease with which Zika jumps from person to mosquito to person, and human travel patterns between countries.

After the current outbreak ends, simulations show that some 30 years could pass before Zika transmission picks up again. Once infected with Zika, people are immune to the virus, Ferguson says, capping an epidemic’s length and buying some time before a resurgence. He can’t say for sure that another major outbreak is still three decades away — but suspects a lull could last at least one decade.

Zika has “been burning through the population,” Ferguson says. “Sooner or later, it starts to run out of people to infect.”

The virus doesn’t need to infect everybody to peter out — just enough to generate herd immunity. At that point, so many people are immune to Zika that it can’t easily spread, protecting those still uninfected.

Killing mosquitoes — a strategy some countries have used to curb Zika’s reach — could actually hinder herd immunity, letting the next epidemic strike sooner, the team’s simulations suggest. With mosquito control that’s only marginally effective, a second wave of Zika hits about five years earlier than with no mosquito control at all, the simulations indicate.

“It makes sense theoretically,” says epidemiologist Mikkel Quam of Umeå University in Sweden. But considering that the cost of herd immunity might be more babies born with birth defects, he says, “any way to reduce infection is worth doing now, even if it means potentially more epidemics in years to come.”

Immunity to Zika could pose problems for vaccine development, Ferguson says. By the time researchers have something that’s safe to use, it will be hard to find a group of people to test it in. “This was a problem at the end of the Ebola epidemic as well,” he says.

Still, Ferguson says it’s an opportunity to think creatively. In the future, for instance, researchers could prequalify trial sites and get clinicians on the ground early, so when (and if) Zika hits somewhere else, say southeast Asia, they’re ready to go.

He also thinks his simulation could help health officials more clearly lay out the risks to pregnant women. Though the epidemic in Latin America will last roughly three years, his team estimates, individual outbreaks within the region can taper off after three to six months.

By tailoring recommendations to different locations, officials could limit the period of time they’re advising women to delay pregnancy.

To douse hot hives, honeybee colonies launch water squadrons

When a honeybee colony gets hot and bothered, the crisis sets tongues wagging. Middle-aged bees stick their tongues into the mouths of their elders, launching these special drinker bees to go collect water. That’s just one detail uncovered during a new study of how a colony superorganism cools in hot weather.

Using lightbulbs to make heat waves in beehives, researchers have traced how honeybees communicate about collecting water and work together in deploying it as air-conditioning. The tests show just how important water is for protecting a colony from overheating, Thomas Seeley of Cornell University and his colleagues report online July 20 in the Journal of Experimental Biology.
Water collection is an aspect of bee biology that we know little about, says insect physiologist Sue Nicolson of the University of Pretoria in South Africa. Collecting pollen and nectar have gotten more attention, perhaps because honeybees store them. Water mostly gets picked up as needed.

Bees often get as much water as they need in the nectar they sip. But they do need extra water at times, such as during overheating in the center of the nest where eggs and young are coddled. When researchers artificially heated that zone in two colonies confined in a greenhouse, worker bees fought back. They used their wings to fan hot air out of the hive. “You can put your hand in the opening of a hive on a hot day and feel the blast of air that’s being pushed out,” Seeley says. Several hundred bees also moved out of the nest to cluster in a beardlike mass nearby. Their evacuation reduces body heat within the nest and opens up passageways for greater airflow, he says.

The bees also had a Plan C — evaporative cooling. Middle-aged bees inside a hive walked toward the nest entrance to where a small number of elderly bees, less than 1 percent of the colony, hang out and wait until water is needed. Heat by itself doesn’t activate these bees, especially since they’re not in the overheating core. Seeley now proposes that the burst of middle-aged bees’ repeated begging for water by tongue extension eventually sends the water-collecting bees into action. They return carrying some 80 percent of their weight in water. “The water carrier comes in looking really fat, and the water receivers start out looking very skinny,” Seeley says. “Over a minute when the transfer takes place, their forms reverse.” Then the receiving bees go to the hot zone, regurgitate their load of water and use their tongues to spread it over the fevered surfaces.

In a water-deprivation experiment, bees prevented from gathering water could not prevent temperatures from rising dangerously, up to 44° Celsius, in their hive. When researchers permitted water-collector squadrons to tank up again, colonies could control temperatures. Even for multitalented bees, water is necessary for cooling, the researchers conclude.

After a severe heat stress, the researchers noticed some bees with plumped-up abdomens hanging inside the colony. “Sometime they would be lined up like bottles of beer in the refrigerator,” Seeley says. Bottled beverages is what they were, he argues, storing water and remaining available if the coming night proved as water-stressed as the day.

“Honeybees continue to amaze,” says Dennis vanEngelsdorp of the University of Maryland in College Park, who studies bee health. “Even after centuries of study, we have something new.”

See the Starship Enterprise, design virtual robots, and more

Boeing Milestones of Flight Hall
Now open
After two years of renovations, some of the museum’s most cherished artifacts — including the Spirit of St. Louis and an Apollo Lunar Module — are now on display alongside new objects, including a studio model of the Starship Enterprise.

National Air & Space Museum, Washington, D.C.
Pterosaurs: Flight in the Age of Dinosaurs
Through October 2
Fossils, life-size models and a virtual flight lab transport visitors back to the time of these ancient fliers.

Natural History Museum of Los Angeles County
DARPA: Redefining Possible
Through September 5
In this hands-on exhibit, see a humanlike robot, prosthetic arm, robotic exoskeleton and other high-tech innovations developed by the U.S. Defense Advanced Research Projects Agency over the last six decades.

Museum of Science and Industry, Chicago

Why a parasitic vine can’t take a bite out of tomatoes

Like botanical vampires, dodder plants (Cuscuta sp.) suck the life out of crops around the world. But tomatoes (Solanum lycopersicum) are mysteriously immune to the parasitic vine’s attacks.

To figure out how they do it, a research team from England and Germany hit tomatoes and three other plant species with C. reflexa extract in the lab. Tomatoes totally overreacted, producing stress hormones to protect themselves from the parasite, while the other plants failed to mount a defense.

This suggests that tomatoes treat the dodder like a virus, taking cues from parasite proteins as a warning system, the team writes July 28 in Science. This sensitivity traces to a receptor that senses the presence of a small protein released by dodder plants.

This probably isn’t the only defense option. Some wild tomato species can fend off dodder even though they’re missing the gene behind the receptor, the researchers note. Still, the findings could prove useful in protecting other crops from vampiric vines through genetic engineering.

Running doesn’t make rats forgetful

Exercise may not erase old memories, as some studies in animals have previously suggested.

Running on an exercise wheel doesn’t make rats forget previous trips through an underwater maze, Ashok Shetty and colleagues report August 2 in the Journal of Neuroscience. Exercise or not, four weeks after learning how to find a hidden platform, rats seem to remember the location just fine, the team found.

The results conflict with two earlier papers that show that running triggers memory loss in some rodents by boosting the birth of new brain cells. Making new brain cells rejiggers memory circuits, and that can make it hard for animals to remember what they’ve learned, says Paul Frankland, a neuroscientist at the Hospital for Sick Children in Toronto. He has reported this phenomenon in mice, guinea pigs and degus (SN: 6/14/14, p. 7).
Maybe rats are the exception, he says, “but I’m not convinced.”

In 2014, Frankland and colleagues reported that brain cell genesis clears out fearful memories in three different kinds of rodents. Two years later, Frankland’s team found similar results with spatial memories. After exercising, mice had trouble remembering the location of a hidden platform in a water maze, the team reported in February in Nature Communications. Again, Frankland and colleagues pinned the memory wipeout on brain cell creation — like a chalkboard eraser that brushes away old information. The wipe seemed to clear the way for new memories to form.

Shetty, a neuroscientist at Texas A&M Health Science Center in Temple, wondered if the results held true in rats, too. “Rats are quite different from mice,” he says. “Their biology is similar to humans.”
Using a water maze similar to Frankland’s, Shetty’s team taught two groups of rats how to find a hidden platform in eight training sessions over eight days. Then rats in just one of the groups exercised on a running wheel. Four weeks later, rats in both groups performed the same in the maze test — despite the fact that running rats had 1.5 to 2 times more newly born brain cells in the hippocampus, a skinny strip of tissue that’s thought to help form new memories.
These results and other memory tests “clearly showed that exercise did not interfere with memory recall,” Shetty says. And it’s likely that exercise doesn’t harm human memories either, he says.

Frankland says it’s possible that Shetty’s rats just learned the water maze too well. Shetty’s team trained their rodents for longer than Frankland’s team did, perhaps etching memories more deeply in the brain.

“The stronger the memory is, the harder it is going to be to erase it,” Frankland says.

But he points out that erasing memories isn’t necessarily a bad thing. “People get hung up on this idea,” he says, but actually, clearing out old info from the brain — forgetting — is important. Without some sort of clearance process, “your memory is going to be full of junk.”

New desalination tech could help quench global thirst

The world is on the verge of a water crisis.

Rainfall shifts caused by climate change plus the escalating water demands of a growing world population threaten society’s ability to meet its mounting needs. By 2025, the United Nations predicts, 2.4 billion people will live in regions of intense water scarcity, which may force as many as 700 million people from their homes in search of water by 2030.

Those water woes have people thirstily eyeing the more than one sextillion liters of water in Earth’s oceans and some underground aquifers with high salt content. For drinking or irrigation, the salt must come out of all those liters. And while desalination has been implemented in some areas — such as Israel and drought-stricken California — for much of the world, salt-removal is a prohibitively expensive energy drain.
Scientists and engineers, however, aren’t giving up on the quest for desalination solutions. The technology underlying modern desalination has been around for decades, “but we have not driven it in such a way as to be ubiquitous,” says UCLA chemical engineer Yoram Cohen. “That’s what we need to figure out: how to make desalination better, cheaper and more accessible.”

Recent innovations could bring costs down and make the technology more accessible. A new wonder material may make desalination plants more efficient. Solar-powered disks could also serve up freshwater with no need for electricity. Once freshwater is on tap, coastal floating farms could supply food to Earth’s most parched places, one scientist proposes.

Watering holes
Taking the salt out of water is hardly a new idea. In the fourth century B.C., Aristotle noted that Greek sailors would evaporate impure water, leaving the salt behind, and then condense the vapor to make drinkable water. In the 1800s, the advent of steam-powered travel and the subsequent need for water without corrosive salt for boilers prompted the first desalination patent, in England.

Most modern desalination plants use a technique that differs from these earlier efforts. Instead of evaporating water, pumps force pressurized saltwater from the ocean or salty underground aquifers through special sheets. These membranes contain molecule-sized holes that act like club bouncers, allowing water to pass through while blocking salt and other contaminants.

The membranes are rolled like rugs and stuffed into meter-long tubes with additional layers that direct water flow and provide structural support. A large desalination plant uses tens of thousands of membranes that fill a warehouse. This process is known as reverse osmosis and the result is salt-free water plus a salty brine waste product that is typically pumped underground or diluted with seawater and released back into the ocean. It takes about 2.5 liters of seawater to make 1 liter of freshwater.

In 2015, more than 18,000 desalination plants worldwide had the annual capacity to produce 31.6 trillion liters of freshwater across 150 countries. While still less than 1 percent of worldwide freshwater usage, desalination production is two-thirds higher than it was in 2008. Driving the boom is a decades-long drop in energy requirements thanks to innovations such as energy-efficient water pumps, improved membranes and plant configurations that use outbound water to help pressurize incoming water. Seawater desalination in the 1970s consumed as much as 20 kilowatt-hours of energy per cubic meter of produced fresh-water; modern plants typically require just over
three kilowatt-hours.

Water, water, everywhere
Desalination plants supply water to more than 300 million people worldwide and experts expect that number to grow. Blue dots in this map represent the more than 500 large desalination plants currently in operation. Each plant produces more than 20 million liters of freshwater daily from seawater and salty groundwater. The number of smaller plants, such as those that provide freshwater on ships or for personal use, is unclear.

Source: DesalData/Global Water Intelligence, the International Desalination Association

There’s a limit, however, to the energy savings. Theoretically, separating a cubic meter of freshwater from two cubic meters of seawater requires a minimum of about 1.06 kilowatt-hours of energy. Desalination is typically only viable when it’s cheaper than the next alternative water source, says Brent Haddad, a water management expert at the University of California, Santa Cruz. Alternatives, such as reducing usage or piping freshwater in from afar, can help, but these methods don’t create more H2O. While other hurdles remain for desalination, such as environmentally friendly wastewater disposal, cost is the main obstacle.

The upfront cost of each desalination membrane is minimal. For decades, most membranes have been made from polyamide, a synthetic polymer prized for its low manufacturing cost — around $1 per square foot. “That’s very, very cheap,” says MIT materials scientist Shreya Dave. “You can’t even buy decent flooring at Home Depot for a dollar a square foot.”

But polyamide comes with additional costs. It degrades quickly when exposed to chlorine, so when the source water contains chlorine, plant workers have to add two steps: remove chlorine before desalination, then add it back later, since drinking water requires chlorine as a disinfectant. To make matters worse, in the absence of chlorine, the membranes are susceptible to growing biological matter that can clog up the works.

With these problems in mind, researchers are turning to other membrane materials. One alternative, graphene oxide, may knock polyamide out of the water.

Membrane maze
Since its discovery in 2004, graphene has been touted as a supermaterial, with proposed applications ranging from superconductors to preventing blood clots (SN: 10/3/15, p. 7; SN Online: 2/11/14). Each graphene sheet is a single-atom-thick layer of carbon atoms arranged in a honeycomb grid. As a hypothetical desalination membrane, graphene would be sturdy and put up little resistance to passing water, reducing energy demands, says MIT materials scientist Jeff Grossman.
Pure graphene is astronomically expensive and difficult to make in large sheets. So Grossman, Dave and colleagues turned to a cheaper alternative, graphene oxide. The carbon atoms in graphene oxide are bordered by oxygen and hydrogen atoms.

Those extra atoms make graphene oxide “messy,” eliminating many of the material’s unique electromagnetic properties. “But for a membrane, we don’t care,” Grossman says. “We’re not trying to run an electric current through it, we’re not trying to use its optical properties — we’re just trying to make a thin piece of material we can poke holes into.”

The researchers start with graphene flakes peeled from hunks of graphite, the form of carbon found in pencil lead. Researchers suspend the graphene oxide flakes, which are easy and cheap to make, in liquid. As a vacuum sucks the liquid out of the container, the flakes form a sheet. The researchers bind the flakes together by adding chains of carbon and oxygen atoms. Those chains latch on to and connect the graphene oxide flakes, forming a maze of interconnected layers. The length of these chains is fine-tuned so that the gaps between flakes are just wide enough for water molecules, but not larger salt molecules, to pass through.

The team can fashion paperlike graphene oxide sheets a couple of centimeters across, though the technique should easily scale up to the roughly 40-square-meter size currently packed into each desalination tube, Dave says. Furthermore, the sheets hold up under pressure. “We are not the only research group using vacuum filtration to assemble membranes from graphene oxide,” she says, “but our membranes don’t fall apart when exposed to water, which is a pretty important thing for water filtration.”

The slimness of the graphene oxide membranes makes it much easier for water molecules to pass through compared with the bulkier poly-amide, reducing the energy needed to pump water through them. Grossman, Dave and colleagues estimated the cost savings of such highly permeable membranes in 2014 in a paper in Energy & Environmental Science. Desalination of ground-water would require 46 percent less energy; processing of saltier seawater would use 15 percent less, though the energy demands of the new proto-types haven’t yet been tested.

So far, the new membranes are especially durable, Grossman says. “Unlike polyamide, graphene oxide membranes are resilient to important cleaning chemicals like chlorine, and they hold up in harsh chemical environments and at high temperatures.” With lower energy requirements and no need to remove and replace chlorine from source water, the new membranes could be one solution to many desalination challenges.
In large quantities, the graphene oxide membranes may be economically viable, Dave predicts. At scale, she estimates that manufacturing graphene oxide membranes will cost around $4 to $5 per square foot — not drastically more expensive than polyamide, considering its other benefits. Existing plants could swap in graphene oxide membranes when older polyamide membranes need replacing, spreading out the cost of the upgrade over about 10 years, Dave says. The team is currently patenting its membrane–making methodology, though the researchers think it will take a few more years before the technology is commercially viable.

“We are at a point where we need a quantum leap, and that can be achieved by new membrane structures,” says Nikolay Voutchkov, executive director of Water Globe Consulting, a company that advises industries and municipalities on desalination projects. The work on graphene oxide “is one way to do it.”

Other materials are also vying to be poly-amide’s successor. Researchers are testing carbon nanotubes, tiny cylindrical carbon structures, as a desalination membrane. Which material wins “will come down to cost,” Voutchkov says. Even if graphene oxide or other membranes save money in the long run, high upfront costs would make them less appealing.

Plus, those new membranes won’t solve the problems of desalination in less-developed areas. The costs of building a large plant and pumping freshwater over long distances make desalination a hard sell in rural Africa and other water-starved places. For hard-to-reach locales, scientists are thinking small.

A portable approach
In remote Africa, electricity is hard to come by. Materials scientist Jia Zhu of Nanjing University in China and colleagues are hoping to bring drinkable water to unpowered, parched places by turning to an old-school desalination technique: evaporating and condensing water.

Their system runs on sunshine, something that is both free and abundant in Earth’s hotter regions. Using the sun’s rays to desalinate water is hardly new, but most existing systems are inefficient. Only about 30 to 45 percent of incoming sunlight typically goes into evaporating water, which means a big footprint is needed to create sizable amounts of freshwater. Zhu and colleagues hope to boost efficiency with a more light-absorbing material.

The material’s fabrication starts with a base sheet made of aluminum oxide speckled with 300-nanometer-wide holes. The researchers then coat this sheet with a thin layer of aluminum particles.

When light hits aluminum particles inside one of the holes, the added energy makes electrons in the aluminum start to oscillate and ripple. These electrons can transfer some of that energy to their surroundings, heating and evaporating nearby water without the need for boiling (SN Online: 4/8/16).
The researchers have produced 2.5-centimeter-wide disks of the new material so far, which are light enough to float. The black disks absorb more than 96 percent of incoming sunlight and about 90 percent of the absorbed energy is used in evaporating water, the researchers reported in the June Nature Photonics.

The evaporated water condenses and collects in a transparent box containing stainless steel. In laboratory tests, the researchers successfully desalinated water from China’s Bohai Sea to levels low enough to meet drinking water standards. The researchers reckon that they can produce around five liters of fresh-water per hour for every square meter of material under intense light. In early tests, the disks held up after multiple uses without dropping in performance.

Aluminum is cheap and the material’s fabrication process can easily scale, Zhu says. While the disks can’t produce as much drinkable water as quickly as big desalination plants, the new method may serve a different need, since it’s more affordable and more portable, he says. “We are developing a personalized water solution without big infrastructure, without extra energy consumption and with a minimum carbon footprint.” The researchers hope that their new desalination technique will find use in developing countries and remote areas where conventional desalination plants aren’t feasible.

The disks are worth pursuing, says Haddad at UC Santa Cruz. “I say let’s try it out. Let’s work with some villages and see how well the tech works and get their feedback. That to me is a good next step to take.”

Desalinating water by evaporation has a downside, though, Voutchkov says. Unlike most methods for removing salt, evaporation produces pure distilled water without any important dissolved minerals such as calcium and magnesium. Drinking water without those minerals can cause health issues over time, he warns. “It’s OK for a few weeks, but you can’t drink it forever.” Minerals would need to be added back in to the water, which is hard to do in remote places, he says.

Freshwater isn’t just for filling water bottles, though. With a nearly endless supply of salt-free water at hand, desalination could bring agriculture to new places.

Coastal crops
When Khaled Moustafa looks at a beach, he doesn’t just see a place for sunning and surfing. The biologist at the National Conservatory of Arts and Crafts in Paris sees the future of farming.

In the April issue of Trends in Biotechnology, Moustafa proposed that desalination could supply irrigation water to colossal floating farms. Self-sufficient floating farms could bring agriculture to arid coastal regions previously inhospitable to crops. The idea, while radical, isn’t too farfetched, given recent technological advancements, Moustafa says.

Floating farms would lay anchor along coastlines and suck up seawater, he proposes. A solar panel–powered water desalination system would provide freshwater to rows of cucumbers, tomatoes or strawberries stacked like a big city high-rise inside a “blue house” (that is, a floating greenhouse).
Each floating farm would stretch 300 meters long by 100 meters wide, providing about 1 square kilometer of cultivable surface over only three-hundredths of a square kilometer of ocean, Moustafa says. The farms could even be mobile, cruising around the ocean to transport crops and escape bad weather.

Such a portable and self-contained farming solution would be most appealing in dry coastal regions that get plenty of sunshine, such as the Arabian Gulf, North Africa and Australia.

“I wouldn’t say it’s a silly idea,” Voutchkov says. “But it’s an idea that can’t get a practical implementation in the short term. In the long term, I do believe it’s a visionary idea.”

Floating farms may come with a large price tag, Moustafa admits. Still, expanding agriculture should “be more of a priority than building costly football stadiums or indoor ski parks in the desert,” he argues.

Whether or not farming will ever take to the seas, new desalination technologies will transform the way society quenches its thirst. More than 300 million people rely on desalination for at least some of their daily water, and that number will only grow as needs rise and new materials and techniques improve the process.

“Desalination can sometimes get a rap for being energy intensive,” Dave says. “But the immediate benefits of having access to water that would not otherwise be there are so large that desalination is a technology that we will be seeing for a long time into the future.”

This article appears in the August 20, 2016, Science News with the headline, “Quenching society’s thirst: Desalination may soon turn a corner, from rare to routine.”

City of graphene hosts forum full of questions

Manchester, England, is not the birthplace of graphene — the atom-thin, honeycomb-like layer of carbon known for its wondrous properties and seemingly limitless applications. But the city is the material’s main booster and, according to the University of Manchester, the official Home of Graphene. That’s because it was there that Andre Geim and Kostya Novoselov figured out that you could isolate the elusive material from graphite (the “lead” in pencils) with repeated dabs of sticky tape.
The two-dimensional material also proved to be a peerless electrical conductor and superstrong, earning the two Manchester scientists the 2010 Nobel Prize in physics. So when the city played host to the EuroScience Open Forum conference late last month, it made sense that Geim, graphene and the material’s many evolving applications took center stage. At the local science museum’s new exhibit about graphene, I learned that Geim is the only Nobelist who has also been honored with an Ig Nobel (which has fun celebrating seemingly useless research in science). He contends many are more familiar with his Ig Nobel–winning device to levitate a tiny frog than with his work on graphene.

Notably, graphene comes up in both of the feature stories in this issue, adding some heft, perhaps, to Mancunian claims. In Thomas Sumner’s cover story “Quenching society’s thirst,” about the growing interest in desalination to meet the globe’s escalating need for freshwater, graphene oxide has a potentially starring role. New membranes made from this material may help increase the efficiency of separating salt from water. Cost and efficiency, Sumner reports, remain the biggest obstacles to the widespread use of desalination.

Graphene can serve as analogy and inspiration in physicists’ efforts to create solid metallic hydrogen, another theorized wonder material, which Emily Conover describes in “Chasing a devious metal.” “It’s a high-stakes, high-passion pursuit that sparks dreams of a coveted new material that could unlock enormous technological advances in electronics,” Conover writes. Solid hydrogen, which has been made, takes on a graphenelike structure when squeezed to high pressures. Solid metal hydrogen might be a superconductor at room temperature, an exciting prospect. Despite significant progress, so far no one has been able to create it.

Local celebrity or not, graphene did share the spotlight with other science superstars at the EuroScience meeting. The gene-editing tool CRISPR got lots of attention. In a review of the historic detection of gravitational waves, Sheila Rowan of the University of Glasgow offered a bevy of questions that gravitational astronomy might be able to answer in the coming years: Where and when do black holes form? What does that tell you about the large-scale formation of galaxies? Is general relativity still valid when gravity is very strong (such as near supermassive black holes)? A session on the human microbiome generated even more questions, as scientists described efforts to use microbial species as telltale signs of diseases such as cancer. And a debate about how to prevent food allergies left most agreeing that more data are needed. As answers come in on all of these and many more fascinating topics, you can be sure that Science News will be there to report on them.