Here’s the James Webb telescope’s first direct image of an exoplanet

This is the first picture of an exoplanet from the James Webb Space Telescope.

“We’re actually measuring photons from the atmosphere of the planet itself,” says astronomer Sasha Hinkley of the University of Exeter in England. Seeing those particles of light, “to me, that’s very exciting.”

The planet is about seven times the mass of Jupiter and lies more than 100 times farther from its star than Earth sits from the sun, direct observations of exoplanet HIP 65426 b show. It’s also young, about 10 million or 20 million years old, compared with the more than 4-billion-year-old Earth, Hinkley and colleagues report in a study submitted August 31 at arXiv.org.
Those three features — size, distance and youth — made HIP 65426 b relatively easy to see, and so a good planet to test JWST’s observing abilities. And the telescope has once again surpassed astronomers’ expectations (SN: 7/11/22).

“We’ve demonstrated really how powerful JWST is as an instrument for the direct imaging of exoplanets,” says exoplanet astronomer and coauthor Aarynn Carter of the University of California, Santa Cruz.

Astronomers have found more than 5,000 planets orbiting other stars (SN: 3/22/22). But almost all of those planets were detected indirectly, either by the planets tugging on the stars with their gravity or blocking starlight as they cross between the star and a telescope’s view.

To see a planet directly, astronomers have to block out the light from its star and let the planet’s own light shine, a tricky process. It’s been done before, but for only about 20 planets total (SN: 11/13/08; SN: 3/14/13; SN: 7/22/20).

“In every area of exoplanet discovery, nature has been very generous,” says MIT astrophysicist Sara Seager, who was not involved in the JWST discovery. “This is the one area where nature didn’t really come through.”

In 2017, astronomers discovered HIP 65426 b and took a direct image of it using an instrument on the Very Large Telescope in Chile. But because that telescope is on the ground, it can’t see all the light coming from the exoplanet. Earth’s atmosphere absorbs a lot of the planet’s infrared wavelengths — exactly the wavelengths JWST excels at observing. The space telescope observed the planet on July 17 and July 30, capturing its glow in four different infrared wavelengths.

“These are wavelengths of light that we’ve never ever seen exoplanets in before,” Hinkley says. “I’ve literally been waiting for this day for six years. It feels amazing.”

Pictures in these wavelengths will help reveal how planets formed and what their atmospheres are made of.

“Direct imaging is our future,” Seager says. “It’s amazing to see the Webb performing so well.”

While the team has not yet studied the atmosphere of HIP 65426 b in detail, it did report the first spectrum — a measurement of light in a range of wavelengths — of an object orbiting a different star. The spectrum allows a deeper look into the object’s chemistry and atmosphere, astronomer Brittany Miles of UC Santa Cruz and colleagues reported September 1 at arXiv.org.

That object is called VHS 1256 b. It’s as heavy as 20 Jupiters, so it may be more like a transition object between a planet and a star, called a brown dwarf, than a giant planet. JWST found evidence that the amounts of carbon monoxide and methane in the atmosphere of the orb are out of equilibrium. That means the atmosphere is getting mixed up, with winds or currents pulling molecules from lower depths to its top and vice versa. The telescope also saw signs of sand clouds, a common feature in brown dwarf atmospheres (SN: 7/8/22).

“This is probably a violent and turbulent atmosphere that is filled with clouds,” Hinkley says.

HIP 65426 b and VHS 1256 b are unlike anything we see in our solar system. They’re more than three times the distance of Uranus from their stars, which suggests they formed in a totally different way from more familiar planets. In future work, astronomers hope to use JWST to image smaller planets that sit closer to their stars.

“What we’d like to do is get down to study Earths, wouldn’t we? We’d really like to get that first image of an Earth orbiting another star,” Hinkley says. That’s probably out of JWST’s reach — Earth-sized planets are still too small see. But a Saturn? That may be something JWST could focus its sights on. Those three features — size, distance and youth — made HIP 65426 b relatively easy to see, and so a good planet to test JWST’s observing abilities. And the telescope has once again surpassed astronomers’ expectations (SN: 7/11/22).

“We’ve demonstrated really how powerful JWST is as an instrument for the direct imaging of exoplanets,” says exoplanet astronomer and coauthor Aarynn Carter of the University of California, Santa Cruz.

Astronomers have found more than 5,000 planets orbiting other stars (SN: 3/22/22). But almost all of those planets were detected indirectly, either by the planets tugging on the stars with their gravity or blocking starlight as they cross between the star and a telescope’s view.

To see a planet directly, astronomers have to block out the light from its star and let the planet’s own light shine, a tricky process. It’s been done before, but for only about 20 planets total (SN: 11/13/08; SN: 3/14/13; SN: 7/22/20).

“In every area of exoplanet discovery, nature has been very generous,” says MIT astrophysicist Sara Seager, who was not involved in the JWST discovery. “This is the one area where nature didn’t really come through.”

In 2017, astronomers discovered HIP 65426 b and took a direct image of it using an instrument on the Very Large Telescope in Chile. But because that telescope is on the ground, it can’t see all the light coming from the exoplanet. Earth’s atmosphere absorbs a lot of the planet’s infrared wavelengths — exactly the wavelengths JWST excels at observing. The space telescope observed the planet on July 17 and July 30, capturing its glow in four different infrared wavelengths.

“These are wavelengths of light that we’ve never ever seen exoplanets in before,” Hinkley says. “I’ve literally been waiting for this day for six years. It feels amazing.”

Pictures in these wavelengths will help reveal how planets formed and what their atmospheres are made of.

“Direct imaging is our future,” Seager says. “It’s amazing to see the Webb performing so well.”

While the team has not yet studied the atmosphere of HIP 65426 b in detail, it did report the first spectrum — a measurement of light in a range of wavelengths — of an object orbiting a different star. The spectrum allows a deeper look into the object’s chemistry and atmosphere, astronomer Brittany Miles of UC Santa Cruz and colleagues reported September 1 at arXiv.org.

That object is called VHS 1256 b. It’s as heavy as 20 Jupiters, so it may be more like a transition object between a planet and a star, called a brown dwarf, than a giant planet. JWST found evidence that the amounts of carbon monoxide and methane in the atmosphere of the orb are out of equilibrium. That means the atmosphere is getting mixed up, with winds or currents pulling molecules from lower depths to its top and vice versa. The telescope also saw signs of sand clouds, a common feature in brown dwarf atmospheres (SN: 7/8/22).

“This is probably a violent and turbulent atmosphere that is filled with clouds,” Hinkley says.

HIP 65426 b and VHS 1256 b are unlike anything we see in our solar system. They’re more than three times the distance of Uranus from their stars, which suggests they formed in a totally different way from more familiar planets. In future work, astronomers hope to use JWST to image smaller planets that sit closer to their stars.

“What we’d like to do is get down to study Earths, wouldn’t we? We’d really like to get that first image of an Earth orbiting another star,” Hinkley says. That’s probably out of JWST’s reach — Earth-sized planets are still too small see. But a Saturn? That may be something JWST could focus its sights on.

New COVID-19 boosters could contain bits of the omicron variant

For all the coronavirus variants that have thrown pandemic curve balls — including alpha, beta, gamma and delta — COVID-19 vaccines have stayed the same. That could change this fall.

On June 28, an advisory committee to the U.S. Food and Drug Administration met to discuss whether vaccine developers should update their jabs to include a portion of the omicron variant — the version of the coronavirus that currently dominates the globe. The verdict: The omicron variant is different enough that it’s time to change the vaccines. Those shots should be a dual mix that includes both a piece of the nearly identical omicron subvariants BA.4/BA.5 and the virus from the original vaccines, the FDA announced June 30.

“This doesn’t mean that we are saying that there will be boosters recommended for everyone in the fall,” Amanda Cohn, chief medical officer for vaccine policy at the U.S Centers for Disease Control and Prevention said at the meeting. “But my belief is that this gives us the right vaccine for preparation for boosters in the fall.”
The decision to update COVID-19 vaccines didn’t come out of nowhere. In the two-plus years that the coronavirus has been spreading around the world, it has had a few “updates” of its own — mutating some of its proteins that allow the virus to more effectively infect our cells or hide from our immune systems.

Vaccine developers had previously crafted vaccines to tackle the beta variant that was first identified in South Africa in late 2020. Those were scrapped after studies showed that current vaccines remained effective.

The current vaccines gave our immune systems the tools to recognize variants such as beta and alpha, which each had a handful of changes from the original SARS-CoV-2 virus that sparked the pandemic. But the omicron variant is a slipperier foe. Lots more viral mutations combined with our own waning immunity mean that once omicron can gain a foothold in the body, vaccine protection isn’t as good as it once was at fending off COVID-19 symptoms (SN: 6/27/22).

The shots still largely protect people from developing severe symptoms, but there has been an uptick in hospitalizations, especially among older people, Heather Scobie, deputy team lead of the CDC’s Surveillance and Analytics Epidemiology Task Force said at the meeting. Deaths among older age groups are also beginning to increase. And while it’s impossible to predict the future, we could be in for another tough fall and winter, epidemiologist Justin Lessler of the University of North Carolina at Chapel Hill said at the meeting. From March 2022 to March 2023, simulations project that deaths from COVID-19 in the United States might number in the tens to hundreds of thousands.

A switch to omicron-containing jabs may give people an extra layer of protection for the upcoming winter. Pfizer-BioNTech presented data at the meeting showing that updated versions of its mRNA shot gave clinical trial participants a boost of antibodies that recognize omicron. One version included omicron alone, while the other is a twofer, or bivalent, jab that mixes the original formulation with omicron. Moderna’s bivalent shot boosted antibodies too. Novavax, which developed a protein-based vaccine that the FDA is still mulling whether to authorize for emergency use, doesn’t have an omicron-based vaccine yet, though the company said its original shot gives people broad protection, generating antibodies that probably will recognize omicron.

Pfizer and Moderna both updated their vaccines using a version of omicron called BA.1, which was the dominant variant in the United States in December and January. But BA.1 has siblings and has already been outcompeted by some of them.
Since omicron first appeared late last year, “we’ve seen a relatively troubling, rapid evolution of SARS-CoV-2,” Peter Marks, director of the FDA’s Center for Biologics Evaluation and Research, said at the advisory meeting.

Now, omicron subvariants BA.2, BA.2.12.1, BA.4 and BA.5 are the dominant versions in the United States and other countries. The CDC estimates that roughly half of new U.S. infections the week ending June 25 were caused by either BA.4 or BA.5. By the time the fall rolls around, yet another new version of omicron — or a different variant entirely — may join their ranks. The big question is which of these subvariants to include in the vaccines to give people the best protection possible.

BA.1, the version already in the updated vaccines, may be the right choice, virologist Kanta Subbarao said at the FDA advisory meeting. An advisory committee to the World Health Organization, which Subbarao chairs, recommended on June 17 that vaccines may need to be tweaked to include omicron, likely BA.1. “We’re not trying to match [what variants] may circulate,” Subbarao said. Instead, the goal is to make sure that the immune system is as prepared as possible to recognize a wide variety of variants, not just specific ones. The hope is that the broader the immune response, the better our bodies will be at fighting the virus off even as it evolves.

The variant that is farthest removed from the original virus is probably the best candidate to accomplish that goal, said Subbarao, who is director of the WHO’s Collaborating Center for Reference and Research on Influenza at the Doherty Institute in Melbourne, Australia. Computational analyses of how antibodies recognize different versions of the coronavirus suggest that BA.1 is probably the original coronavirus variant’s most distant sibling, she said.

Some members of the FDA advisory committee disagreed with choosing BA.1, instead saying that they’d prefer vaccines that include a portion of BA.4 or BA.5. With BA.1 largely gone, it may be better to follow the proverbial hockey puck where it’s going rather than where it’s been, said Bruce Gellin, chief of Global Public Health Strategy with the Rockefeller Foundation in Washington, D.C. Plus, BA.4 and BA.5 are also vastly different from the original variant. Both have identical spike proteins, which the virus uses to break into cells and the vaccines use to teach our bodies to recognize an infection. So when it comes to making vaccines, the two are somewhat interchangeable.
There are some real-world data suggesting that current vaccines offer the least amount of protection from BA.4 and BA.5 compared with other omicron subvariants, Marks said. Pfizer also presented data showing results from a test in mice of a bivalent jab with the original coronavirus strain plus BA.4/BA.5. The shot sparked a broad immune response that boosted antibodies against four omicron subvariants. It’s unclear what that means for people.

Not everyone on the FDA advisory committee agreed that an update now is necessary — two members voted against it. Pediatrician Henry Bernstein of Zucker School of Medicine at Hofstra/Northwell in Uniondale, N.Y., noted that the current vaccines are still effective against severe disease and that there aren’t enough data to show that any changes would boost vaccine effectiveness. Pediatric infectious disease specialist Paul Offit of Children’s Hospital of Philadelphia said that he agrees that vaccines should help people broaden their immune responses, but he’s not yet convinced omicron is the right variant for it.

Plenty of other open questions remain too. The FDA could have authorized either a vaccine that contains omicron alone or a bivalent shot. Some data presented at the meeting hinted that a bivalent dose might spark immunity that could be more durable, but that’s still unknown. Pfizer and Moderna tested their updated shots in adults. It’s unclear what the results mean for kids. Also unknown is whether people who have never been vaccinated against COVID-19 could eventually start with such an omicron-based vaccine instead of the original two doses.

Maybe researchers will get some answers before boosters start in the fall. But health agencies needed to make decisions now, so vaccine developers have a chance to make the shots in the first place. Unfortunately, we’re always lagging behind the virus, said pediatrician Hayley Gans of Stanford University. “We can’t always wait for the data to catch up.”