An award-winning photo captures a ‘zombie’ fungus erupting from a fly

Sometimes a photo is literally a matter of life, death — and zombies.

This haunting image, winner of the 2022 BMC Ecology and Evolution photography competition, certainly fits that description. It captures the fruiting bodies of a parasitic fungus, emerging from the lifeless body of an infected fly in the Peruvian rainforest.

The fungus-infested fly was one of many images submitted to the contest from all over the world, aiming to showcase the beauty of the natural world and the challenges it faces. The journal revealed the winners August 18.
Roberto García-Roa, a conservation photographer and evolutionary biologist at the University of Valencia in Spain, took the winning photo while visiting the Tambopata National Reserve, a protected habitat in the Amazon.

The fungus erupting from the fly belongs to the genus Ophiocordyceps, a diverse collection of parasitic fungi known as “zombie fungi,” due to their ability to infect insects and control their minds (SN: 7/17/19).

“There is still much to unravel about the diversity of these fungi as it is likely that each insect species infected succumbs to its own, specialized fungus,” says Charissa de Bekker, an expert in parasitic fungi at Utrecht University in the Netherlands.

First, spores of the fungus land on the ill-fated fly. So begins the manipulative endgame. The spores infiltrate the fly’s exoskeleton before infecting its body and eventually hijacking its mind. Once in control, the fungus uses its new powers of locomotion to relocate to a microclimate more suitable to its own growth — somewhere with the right temperature, light and moisture.

Fungus and fly then bide their time until the fly dies, becoming a food source for the fungus to consume. Fruiting bodies work their way out of the fly, filled with spores that are released into the air to continue the macabre cycle in a new, unsuspecting host. It is a “conquest shaped by thousands of years of evolution,” García-Roa said in a statement announcing the winners.

Research into the molecular aspects of fungal mind control is under way, De Bekker says, including in her own lab. “These fungi harbor all sorts of bioactive chemicals that we have yet to characterize and that could have novel medicinal and pest control applications.”

Here’s the James Webb telescope’s first direct image of an exoplanet

This is the first picture of an exoplanet from the James Webb Space Telescope.

“We’re actually measuring photons from the atmosphere of the planet itself,” says astronomer Sasha Hinkley of the University of Exeter in England. Seeing those particles of light, “to me, that’s very exciting.”

The planet is about seven times the mass of Jupiter and lies more than 100 times farther from its star than Earth sits from the sun, direct observations of exoplanet HIP 65426 b show. It’s also young, about 10 million or 20 million years old, compared with the more than 4-billion-year-old Earth, Hinkley and colleagues report in a study submitted August 31 at arXiv.org.
Those three features — size, distance and youth — made HIP 65426 b relatively easy to see, and so a good planet to test JWST’s observing abilities. And the telescope has once again surpassed astronomers’ expectations (SN: 7/11/22).

“We’ve demonstrated really how powerful JWST is as an instrument for the direct imaging of exoplanets,” says exoplanet astronomer and coauthor Aarynn Carter of the University of California, Santa Cruz.

Astronomers have found more than 5,000 planets orbiting other stars (SN: 3/22/22). But almost all of those planets were detected indirectly, either by the planets tugging on the stars with their gravity or blocking starlight as they cross between the star and a telescope’s view.

To see a planet directly, astronomers have to block out the light from its star and let the planet’s own light shine, a tricky process. It’s been done before, but for only about 20 planets total (SN: 11/13/08; SN: 3/14/13; SN: 7/22/20).

“In every area of exoplanet discovery, nature has been very generous,” says MIT astrophysicist Sara Seager, who was not involved in the JWST discovery. “This is the one area where nature didn’t really come through.”

In 2017, astronomers discovered HIP 65426 b and took a direct image of it using an instrument on the Very Large Telescope in Chile. But because that telescope is on the ground, it can’t see all the light coming from the exoplanet. Earth’s atmosphere absorbs a lot of the planet’s infrared wavelengths — exactly the wavelengths JWST excels at observing. The space telescope observed the planet on July 17 and July 30, capturing its glow in four different infrared wavelengths.

“These are wavelengths of light that we’ve never ever seen exoplanets in before,” Hinkley says. “I’ve literally been waiting for this day for six years. It feels amazing.”

Pictures in these wavelengths will help reveal how planets formed and what their atmospheres are made of.

“Direct imaging is our future,” Seager says. “It’s amazing to see the Webb performing so well.”

While the team has not yet studied the atmosphere of HIP 65426 b in detail, it did report the first spectrum — a measurement of light in a range of wavelengths — of an object orbiting a different star. The spectrum allows a deeper look into the object’s chemistry and atmosphere, astronomer Brittany Miles of UC Santa Cruz and colleagues reported September 1 at arXiv.org.

That object is called VHS 1256 b. It’s as heavy as 20 Jupiters, so it may be more like a transition object between a planet and a star, called a brown dwarf, than a giant planet. JWST found evidence that the amounts of carbon monoxide and methane in the atmosphere of the orb are out of equilibrium. That means the atmosphere is getting mixed up, with winds or currents pulling molecules from lower depths to its top and vice versa. The telescope also saw signs of sand clouds, a common feature in brown dwarf atmospheres (SN: 7/8/22).

“This is probably a violent and turbulent atmosphere that is filled with clouds,” Hinkley says.

HIP 65426 b and VHS 1256 b are unlike anything we see in our solar system. They’re more than three times the distance of Uranus from their stars, which suggests they formed in a totally different way from more familiar planets. In future work, astronomers hope to use JWST to image smaller planets that sit closer to their stars.

“What we’d like to do is get down to study Earths, wouldn’t we? We’d really like to get that first image of an Earth orbiting another star,” Hinkley says. That’s probably out of JWST’s reach — Earth-sized planets are still too small see. But a Saturn? That may be something JWST could focus its sights on. Those three features — size, distance and youth — made HIP 65426 b relatively easy to see, and so a good planet to test JWST’s observing abilities. And the telescope has once again surpassed astronomers’ expectations (SN: 7/11/22).

“We’ve demonstrated really how powerful JWST is as an instrument for the direct imaging of exoplanets,” says exoplanet astronomer and coauthor Aarynn Carter of the University of California, Santa Cruz.

Astronomers have found more than 5,000 planets orbiting other stars (SN: 3/22/22). But almost all of those planets were detected indirectly, either by the planets tugging on the stars with their gravity or blocking starlight as they cross between the star and a telescope’s view.

To see a planet directly, astronomers have to block out the light from its star and let the planet’s own light shine, a tricky process. It’s been done before, but for only about 20 planets total (SN: 11/13/08; SN: 3/14/13; SN: 7/22/20).

“In every area of exoplanet discovery, nature has been very generous,” says MIT astrophysicist Sara Seager, who was not involved in the JWST discovery. “This is the one area where nature didn’t really come through.”

In 2017, astronomers discovered HIP 65426 b and took a direct image of it using an instrument on the Very Large Telescope in Chile. But because that telescope is on the ground, it can’t see all the light coming from the exoplanet. Earth’s atmosphere absorbs a lot of the planet’s infrared wavelengths — exactly the wavelengths JWST excels at observing. The space telescope observed the planet on July 17 and July 30, capturing its glow in four different infrared wavelengths.

“These are wavelengths of light that we’ve never ever seen exoplanets in before,” Hinkley says. “I’ve literally been waiting for this day for six years. It feels amazing.”

Pictures in these wavelengths will help reveal how planets formed and what their atmospheres are made of.

“Direct imaging is our future,” Seager says. “It’s amazing to see the Webb performing so well.”

While the team has not yet studied the atmosphere of HIP 65426 b in detail, it did report the first spectrum — a measurement of light in a range of wavelengths — of an object orbiting a different star. The spectrum allows a deeper look into the object’s chemistry and atmosphere, astronomer Brittany Miles of UC Santa Cruz and colleagues reported September 1 at arXiv.org.

That object is called VHS 1256 b. It’s as heavy as 20 Jupiters, so it may be more like a transition object between a planet and a star, called a brown dwarf, than a giant planet. JWST found evidence that the amounts of carbon monoxide and methane in the atmosphere of the orb are out of equilibrium. That means the atmosphere is getting mixed up, with winds or currents pulling molecules from lower depths to its top and vice versa. The telescope also saw signs of sand clouds, a common feature in brown dwarf atmospheres (SN: 7/8/22).

“This is probably a violent and turbulent atmosphere that is filled with clouds,” Hinkley says.

HIP 65426 b and VHS 1256 b are unlike anything we see in our solar system. They’re more than three times the distance of Uranus from their stars, which suggests they formed in a totally different way from more familiar planets. In future work, astronomers hope to use JWST to image smaller planets that sit closer to their stars.

“What we’d like to do is get down to study Earths, wouldn’t we? We’d really like to get that first image of an Earth orbiting another star,” Hinkley says. That’s probably out of JWST’s reach — Earth-sized planets are still too small see. But a Saturn? That may be something JWST could focus its sights on.

‘The Milky Way’ wants you to get to know your home in the universe

Meet the Milky Way in its own words.

The Milky Way: An Autobiography of Our Galaxy takes a tour of our home in the cosmos from an unexpected perspective. Astrophysicist and folklorist Moiya McTier presents herself not as the author, but as the lucky human vessel through which the Milky Way has chosen to tell its story. Then she lets the galaxy take it away, with humor, heart and a huge dose of snark.

The book alternates chapters between science and mythology, reflecting McTier’s dual specialties (her bio says she was the first student in Harvard University’s history to study both). “Many of you don’t realize this, but myths were some of your species’ first attempt at scientific inquiry,” the Milky Way tells us.

The Milky Way is telling its story now because it’s sick of being ignored. Once upon a time, humans looked to the glittering smudge of stars in the sky for insight into when to plant crops or avoid floods. We told stories about the Milky Way’s importance in the origin and fate of the world.

Our galaxy ate it up: For an entity that spends most of its time ripping up smaller galaxies and watching its own stars die, “your stories made me feel loved and needed and, perhaps for the first time in my long existence, more helpful than I was ruinous.” But in the last few centuries, technology and light pollution have pulled humankind away. “At first, I thought it was just a phase,” the Milky Way says. “Then I remembered … that several hundred years is actually a long time for humans.”
So the Milky Way decided to remind us why it’s so important. Its autobiography covers big-picture scientific questions about galaxies, like where they come from (“When a gas cloud loves itself very much,” the Milky Way explains, “it hugs itself extra tight, and after a few hundred million years, a baby galaxy is born. Leave the storks out of it, please.”). It also gets into what galaxies are made of, how they interact with other galaxies, and how they live and die. The book then zooms out to cover the origins and possible ends of the universe, mysteries like dark matter and dark energy, and even humankind’s search for other intelligent life (SN: 8/4/20).

The author takes pains to explain scientific jargon and the technical tools that astronomers use to study the sky. A lot of popular astronomy writing glosses over how astronomers think about cosmic distance or exactly what a spectrum is, but not this book. If you’ve ever been curious about these insider details, The Milky Way has you covered.

McTier’s version of our home galaxy is heavily anthropomorphized. The Milky Way is brash, vain and arrogant in a way that may hide a secret insecurity. Its central black hole is characterized as the physical embodiment of the galaxy’s shame and regrets, a source of deep existential angst. And its relationship with the Andromeda galaxy is like a long-term, long-distance romance, with each galaxy sending stars back and forth as love notes until the two can eventually merge (SN: 3/05/21).

This could have felt gimmicky. But McTier’s efforts to make the metaphors work while keeping the science accurate and up-to-date made the premise endearing and entertaining.

I laughed twice on Page 1. I learned a new word on Page 2. I dog-eared the endnotes early on because it became instantly clear I would want to read every one. I read this book while traveling in rural upstate New York, where the sky is much clearer than at my home outside of Boston. The Milky Way reminded me to look up and appreciate my home in the universe, just like its narrator wanted.

Megatooth sharks may have been higher on the food chain than any ocean animal ever

Whenever paleontologist Dana Ehret gives talks about the 15-meter-long prehistoric sharks known as megalodons, he likes to make a joke: “What did megalodon eat?” asks Ehret, Assistant Curator of Natural History at the New Jersey State Museum in Trenton. “Well,” he says, “whatever it wanted.”

Now, there might be evidence that’s literally true. Some megalodons (Otodus megalodon) may have been “hyper apex predators,” higher up the food chain than any ocean animal ever known, researchers report in the June 22 Science Advances. Using chemical measurements of fossilized teeth, scientists compared the diets of marine animals — from polar bears to ancient great white sharks — and found that megalodons and their direct ancestors were often predators on a level never seen before.
The finding contradicts another recent study, which found megalodons were at a similar level in the food chain as great white sharks (SN: 5/31/22). If true, the new results might change how researchers think about what drove megalodons to extinction around 3.5 million years ago.

In the latest study, researchers examined dozens of fossilized teeth for varieties of nitrogen, called isotopes, that have different numbers of neutrons. In animals, one specific nitrogen isotope tends to be more common than another. A predator absorbs both when it eats prey, so the imbalance between the isotopes grows further up the food chain.

For years, scientists have used this trend to learn about modern creatures’ diets. But researchers were almost never able to apply it to fossils millions of years old because the nitrogen levels were too low. In the new study, scientists get around this by feeding their samples to bacteria that digest the nitrogen into a chemical the team can more easily measure.

The result: Megalodon and its direct ancestors, known collectively as megatooth sharks, showed nitrogen isotope excesses sometimes greater than any known marine animal. They were on average probably two levels higher on the food chain than today’s great white sharks, which is like saying that some megalodons would have eaten a beast that ate great whites.

“I definitely thought that I’d just messed up in the lab,” says Emma Kast, a biogeochemist at the University of Cambridge. Yet on closer inspection, the data held up.

The result is “eyebrow-raising,” says Robert Boessenecker, a paleontologist at the College of Charleston in South Carolina who was not involved in the study. “Even if megalodon was eating nothing but killer whales, it would still need to be getting some of this excess nitrogen from something else,” he says, “and there’s just nothing else in the ocean today that has nitrogen isotopes that are that concentrated.”

“I don’t know how to explain it,” he says.

There are possibilities. Megalodons may have eaten predatory sperm whales, though those went extinct before the megatooth sharks. Or megalodons could have been cannibals (SN: 10/5/20).

Another complication comes from the earlier, contradictory study. Those researchers examined the same food chain — in some cases, even the same shark teeth — using a zinc isotope instead of nitrogen. They drew the opposite conclusion, finding megalodons were on a similar level as other apex predators.

The zinc method is not as established as the nitrogen method, though nitrogen isotopes have also rarely been used this way before. “It could be that we don’t have a total understanding and grasp of this technique,” says Sora Kim, a paleoecologist at the University of California, Merced who was involved in both studies. “But if [the newer study] is right, that’s crazy.”

Confirming the results would be a step toward understanding why megalodons died off. If great whites had a similar diet, it could mean that they outcompeted megalodons for food, says Ehret, who was not involved in the study. The new findings suggest that’s unlikely, but leave room for the possibility that great whites competed with — or simply ate — juvenile megalodons (SN: 1/12/21).

Measuring more shark teeth with both techniques could solve the mystery and reconcile the studies. At the same time, Kast says, there’s plenty to explore with their method for measuring nitrogen isotopes in fossils. “There’s so many animals and so many different ecosystems and time periods,” she says.

Boessenecker agrees. When it comes to the ancient oceans, he says, “I guarantee we’re going to find out some really weird stuff.”