Ancient DNA tells of two origins for dogs

Dogs were domesticated at least twice, a new study suggests.

Genetic analyses of a 4,800-year-old Irish dog and 59 other ancient dogs suggest that canines and humans became pals in both Europe and East Asia long before the advent of farming, researchers report June 3 in Science. Later, dogs from East Asia accompanied their human companions to Europe, where their genetic legacy trumped that of dogs already living there, the team also concludes.

That muddled genetic legacy may help explain why previous studies have indicated that dogs were domesticated from wolves only once, although evidence hasn’t been clear about whether this took place in East Asia, Central Asia or Europe. The idea that dogs came from East Asia or Central Asia is mostly based on analysis of DNA from modern dogs, while claims for European origins have been staked on studies of prehistoric pups’ genetics. “This paper combines both types of data” to give a more complete picture of canine evolution, says Mietje Germonpré, a paleontologist at the Royal Belgian Institute of Natural Sciences in Brussels, who was not part of the study.

Understanding this domestication process may illuminate humans’ distant past — dogs were probably the first domesticated animal and may have paved the way for taming other animals and plants.

In the study, evolutionary geneticist Laurent Frantz of the University of Oxford and colleagues compiled the complete set of genes, or genome, of an ancient dog found in a tomb near Newgrange, Ireland. Researchers drilled into the hard-as-stone petrous portion of the dog’s temporal bone, which contains the inner ear, to get well-protected DNA, Frantz says.
The researchers don’t know much about what the midsize dog looked like; it doesn’t bear any genetic markers of particular modern dog breeds, Frantz says. “He wasn’t black. He wasn’t spotted. He wasn’t white.” Instead, the Newgrange dog was probably a mongrel with fur similar to a wolf’s.

But the ancient mutt has something special in his genes — a stretch of enigmatic DNA, says Germonpré. “This Irish dog has a component that can’t be found in recent dogs or recent wolves.” That distinct DNA could represent the genetic ancestry of indigenous European prehistoric dogs, she says. Or it could be a trace of an extinct ancient wolf that may have given rise to dogs (SN: 7/13/13, p. 14).
Unraveling the prehistoric mutt’s DNA may help researchers understand dogs’ history. Already, comparisons of the ancient Irish dog’s DNA with that of modern dogs reveal that East Asian dogs are genetically different from European and Middle Eastern dogs, the researchers have found. Other researchers may have missed the distinction between the two groups because they were working with subsets of the data that Frantz and colleagues amassed. Frantz’s team generated DNA data from the Newgrange dog and other ancient dogs, but also used data from previous studies of modern dogs, including the complete genomes of 80 dogs and less-complete sampling of DNA from 605 dogs, a collection of 48 breeds and village dogs of no particular breed.

The distinct genetic profiles of today’s Eastern and Western dogs suggests that two separate branches of the canine family tree once existed. The Newgrange dog’s DNA is more like that of the Western dogs. Since the Irish dog is 4,800 years old, the Eastern and Western dogs must have formed distinct groups before then, probably between about 6,400 to 14,000 years ago. The finding suggests that dogs may have been domesticated from local wolves in two separate locations during the Stone Age.

The ancient dog’s DNA may also help pinpoint when domestication happened. Using the Newgrange dog as a calibrator and the modern dogs to determine how much dogs have changed genetically in the past 4,800 years, Frantz and colleagues determined that dogs’ mutation rate is slower than researchers have previously calculated. Then, using the slower mutation rate to calculate when dogs became distinct from wolves, the researchers found that separate branches of the canine family tree formed between 20,000 and 60,000 years ago. Many previous calculations put the split between about 13,000 and about 30,000 years ago, but the new dates are consistent with figures from a study of an ancient wolf’s DNA (SN: 6/13/15, p. 10). Frantz and colleagues emphasize that their estimate doesn’t necessarily pinpoint the time of domestication. It could indicate that different populations of wolves were evolving into new species at that time. One of those could later have evolved into the ancestor of dogs.
Although the new study indicates there were two origin points for dogs, humans’ canine companions have since mixed and mingled. By comparing mitochondrial DNA, the genetic material inside energy-generating organelles, from 59 ancient European dogs and 167 modern dogs, the researchers determined that East Asian dogs at least partially genetically replaced European dogs in the distant past. Mitochondria are inherited from the mother. Ancient European dogs’ mitochondrial DNA varieties, or haplogroups, differed from those of modern dogs, the researchers found. Of the ancient dogs, 63 percent carried haplogroup C and 20 percent carried haplogroup D. But in present-day dogs, 64 percent carry haplogroup A and 22 percent carry haplogroup B. That shift and other evidence indicate that dogs from the East moved west with humans, and Eastern dogs passed more of their genetic heritage to descendants than Western dogs did.

Archaeological evidence backs up the dual origin story. Dogs as old as 12,500 years old have been found in East Asia. In Europe, dogs date back to 15,000 years ago. But there is a dearth of dog remains older than 8,000 years old in Central Eurasia. That lack possibly rules out this in-between region as a domestication site, despite some genetic evidence from village dogs that says otherwise (SN:11/28/15, p. 8). “The argument in this paper, pointing out a pattern in the archaeological data of an absence of early dog remains in the period [before] 10,000 years ago, should be taken very seriously,” says Pontus Skoglund, an evolutionary geneticist at Harvard University.

He’s not yet won over by the double-domestication hypothesis, though. The researchers admit they can’t yet rule out that dogs were domesticated once, then transported to different places where isolation, random chance and other factors caused them to drift apart genetically.

More ancient DNA may help clarify the still-hazy picture of dog domestication. Says Skoglund: “It’s going to be an exciting time going forward.”

Problem-solving insights enable new technologies

Fire was one of our ancient ancestors’ first forays into technology. Controlled burns enabled early hominids to ward off cold, cook and better preserve game. New evidence places fire-making in Europe as early as 800,000 years ago, much earlier than previously thought and closer to scientists’ best estimate for hominids’ first use of fire, about 1 million years ago in Africa.

It’s unclear how early Homo species came to master fire, but it was perhaps an attempt at problem solving — capturing a natural phenomenon and harnessing it for use. That tradition has persisted in human cultures. It thrives today among scientists, especially those engaged in problem solving related to society’s most pressing issues.
Take drug addiction, a vexing problem that has grown in urgency in the last decade as more and more people have become dependent on opioids — not only street drugs like heroin but also prescription pain meds like OxyContin and fentanyl. Opioids can be extremely difficult to give up because of their strong addictive pull. So scientists are trying to develop vaccines that would block the effects of heroin and other drugs of abuse, as Susan Gaidos reports. Eliciting a strong immune response, researchers theorize, could stop the drug from reaching the brain, preventing the high that fuels addiction. Success with such biotechnology, now being tested only in lab animals, would offer hope to many battling to stay off drugs.

Another modern scourge is terrorism, and anthropologists like Scott Atran have been exploring the psychological and cultural factors that drive some individuals to extreme acts of violence. There is no technology to prevent people from committing such acts — at least not yet. Basic explorations must always precede any practical use of new knowledge: Hominids could not use fire until they understood its nature and limits — which things burn, which do not; water and sand douse flame, oil and fat fuel it. Mapping terrorism’s contours is just a beginning on a long journey toward developing tactics for undercutting its power.

So it is with many other reports in this issue about basic explorations that may well precede the birth of new technologies. A few favorites:

A report on insights into how the microbial denizens of the gut influence weight gain and obesity. Scientists have now revealed a molecule made by microbes that sends a signal to the brain, influencing fat storage and appetite.

An intriguing study of mice with genetic mutations similar to those found in some people with autism. The findings suggest a role in the disorder for nerve cells involved with touch, as well as a new way to think about autism that may one day identify a target for novel therapies and interventions.

News of a second detection of gravitational waves from LIGO. It’s less dramatic and showy than the first black hole merger detection, announced in February. But it is nonetheless a further sign that a new era, one in which astronomers probe the heavens by watching for violent if subtle wakes in the fabric of spacetime, is upon us.

Rewarding stimulation boosts immune system

Feeling good may help the body fight germs, experiments on mice suggest. When activated, nerve cells that help signal reward also boost the mice’s immune systems, scientists report July 4 in Nature Medicine. The study links positive feelings to a supercharged immune system, results that may partially explain the placebo effect.

Scientists artificially dialed up the activity of nerve cells in the ventral tegmental area — a part of the brain thought to help dole out rewarding feelings. This activation had a big effect on the mice’s immune systems, Tamar Ben-Shaanan of Technion-Israel Institute of Technology in Haifa and colleagues found.

A day after the nerve cells in the ventral tegmental area were activated, mice were infected with E. coli bacteria. Later tests revealed that mice with artificially activated nerve cells had less E. coli in their bodies than mice without the nerve cell activation. Certain immune cells seemed to be ramped up, too. Monocytes and macrophages were more powerful E. coli killers after the nerve cell activation.

If a similar effect is found in people, the results may offer a biological explanation for how positive thinking can influence health.

Zika epidemic peaking in Latin America

Zika should soon run its course in Latin America.

Within the next couple of years, the epidemic that has battered the region since 2015 will largely be over, researchers estimate in a paper online July 14 in Science.

“If we’re not past the peak already, we’re very close to it,” says study coauthor Neil Ferguson of Imperial College London. After this outbreak winds down, it may be a decade ­— at least — before another large-scale Zika epidemic hits the region.
The new timeline could help vaccine researchers get a jump on future outbreaks, and might make health officials rethink advice to pregnant women trying to avoid Zika-related birth defects. Ferguson’s work also suggests something counterintuitive: Current efforts to kill Zika-carrying mosquitoes might actually make it easier for the virus to reemerge.

“It’s an important and timely analysis,” says infectious disease researcher Oliver Pybus of the University of Oxford. “Policy makers would be wise to read it carefully.”

Brazil reported the first cases of Zika in May 2015. Since then, the mosquito-borne virus has spread to 48 countries. Scientists have now widely accepted Zika as a cause of microcephaly, a devastating birth defect that leaves babies with shrunken heads and brains, as well as other serious problems (SN Online: 6/28/16).

Scientists and health officials have hustled to fight Zika, but they’ve had trouble keeping up. Mosquito-control efforts haven’t helped much, says Ferguson, and a safe and effective vaccine could still be years away. What’s more, advice to postpone pregnancy isn’t always realistic, he says.

Predicting the epidemic’s course could refine current Zika-fighting strategies.
Ferguson and colleagues made a computer simulation of Zika transmission within Latin America, using data from 35 countries that have reported cases. The team factored in such variables as seasonal climate variation, the ease with which Zika jumps from person to mosquito to person, and human travel patterns between countries.

After the current outbreak ends, simulations show that some 30 years could pass before Zika transmission picks up again. Once infected with Zika, people are immune to the virus, Ferguson says, capping an epidemic’s length and buying some time before a resurgence. He can’t say for sure that another major outbreak is still three decades away — but suspects a lull could last at least one decade.

Zika has “been burning through the population,” Ferguson says. “Sooner or later, it starts to run out of people to infect.”

The virus doesn’t need to infect everybody to peter out — just enough to generate herd immunity. At that point, so many people are immune to Zika that it can’t easily spread, protecting those still uninfected.

Killing mosquitoes — a strategy some countries have used to curb Zika’s reach — could actually hinder herd immunity, letting the next epidemic strike sooner, the team’s simulations suggest. With mosquito control that’s only marginally effective, a second wave of Zika hits about five years earlier than with no mosquito control at all, the simulations indicate.

“It makes sense theoretically,” says epidemiologist Mikkel Quam of Umeå University in Sweden. But considering that the cost of herd immunity might be more babies born with birth defects, he says, “any way to reduce infection is worth doing now, even if it means potentially more epidemics in years to come.”

Immunity to Zika could pose problems for vaccine development, Ferguson says. By the time researchers have something that’s safe to use, it will be hard to find a group of people to test it in. “This was a problem at the end of the Ebola epidemic as well,” he says.

Still, Ferguson says it’s an opportunity to think creatively. In the future, for instance, researchers could prequalify trial sites and get clinicians on the ground early, so when (and if) Zika hits somewhere else, say southeast Asia, they’re ready to go.

He also thinks his simulation could help health officials more clearly lay out the risks to pregnant women. Though the epidemic in Latin America will last roughly three years, his team estimates, individual outbreaks within the region can taper off after three to six months.

By tailoring recommendations to different locations, officials could limit the period of time they’re advising women to delay pregnancy.

To douse hot hives, honeybee colonies launch water squadrons

When a honeybee colony gets hot and bothered, the crisis sets tongues wagging. Middle-aged bees stick their tongues into the mouths of their elders, launching these special drinker bees to go collect water. That’s just one detail uncovered during a new study of how a colony superorganism cools in hot weather.

Using lightbulbs to make heat waves in beehives, researchers have traced how honeybees communicate about collecting water and work together in deploying it as air-conditioning. The tests show just how important water is for protecting a colony from overheating, Thomas Seeley of Cornell University and his colleagues report online July 20 in the Journal of Experimental Biology.
Water collection is an aspect of bee biology that we know little about, says insect physiologist Sue Nicolson of the University of Pretoria in South Africa. Collecting pollen and nectar have gotten more attention, perhaps because honeybees store them. Water mostly gets picked up as needed.

Bees often get as much water as they need in the nectar they sip. But they do need extra water at times, such as during overheating in the center of the nest where eggs and young are coddled. When researchers artificially heated that zone in two colonies confined in a greenhouse, worker bees fought back. They used their wings to fan hot air out of the hive. “You can put your hand in the opening of a hive on a hot day and feel the blast of air that’s being pushed out,” Seeley says. Several hundred bees also moved out of the nest to cluster in a beardlike mass nearby. Their evacuation reduces body heat within the nest and opens up passageways for greater airflow, he says.

The bees also had a Plan C — evaporative cooling. Middle-aged bees inside a hive walked toward the nest entrance to where a small number of elderly bees, less than 1 percent of the colony, hang out and wait until water is needed. Heat by itself doesn’t activate these bees, especially since they’re not in the overheating core. Seeley now proposes that the burst of middle-aged bees’ repeated begging for water by tongue extension eventually sends the water-collecting bees into action. They return carrying some 80 percent of their weight in water. “The water carrier comes in looking really fat, and the water receivers start out looking very skinny,” Seeley says. “Over a minute when the transfer takes place, their forms reverse.” Then the receiving bees go to the hot zone, regurgitate their load of water and use their tongues to spread it over the fevered surfaces.

In a water-deprivation experiment, bees prevented from gathering water could not prevent temperatures from rising dangerously, up to 44° Celsius, in their hive. When researchers permitted water-collector squadrons to tank up again, colonies could control temperatures. Even for multitalented bees, water is necessary for cooling, the researchers conclude.

After a severe heat stress, the researchers noticed some bees with plumped-up abdomens hanging inside the colony. “Sometime they would be lined up like bottles of beer in the refrigerator,” Seeley says. Bottled beverages is what they were, he argues, storing water and remaining available if the coming night proved as water-stressed as the day.

“Honeybees continue to amaze,” says Dennis vanEngelsdorp of the University of Maryland in College Park, who studies bee health. “Even after centuries of study, we have something new.”

See the Starship Enterprise, design virtual robots, and more

Boeing Milestones of Flight Hall
Now open
After two years of renovations, some of the museum’s most cherished artifacts — including the Spirit of St. Louis and an Apollo Lunar Module — are now on display alongside new objects, including a studio model of the Starship Enterprise.

National Air & Space Museum, Washington, D.C.
Pterosaurs: Flight in the Age of Dinosaurs
Through October 2
Fossils, life-size models and a virtual flight lab transport visitors back to the time of these ancient fliers.

Natural History Museum of Los Angeles County
DARPA: Redefining Possible
Through September 5
In this hands-on exhibit, see a humanlike robot, prosthetic arm, robotic exoskeleton and other high-tech innovations developed by the U.S. Defense Advanced Research Projects Agency over the last six decades.

Museum of Science and Industry, Chicago

Running doesn’t make rats forgetful

Exercise may not erase old memories, as some studies in animals have previously suggested.

Running on an exercise wheel doesn’t make rats forget previous trips through an underwater maze, Ashok Shetty and colleagues report August 2 in the Journal of Neuroscience. Exercise or not, four weeks after learning how to find a hidden platform, rats seem to remember the location just fine, the team found.

The results conflict with two earlier papers that show that running triggers memory loss in some rodents by boosting the birth of new brain cells. Making new brain cells rejiggers memory circuits, and that can make it hard for animals to remember what they’ve learned, says Paul Frankland, a neuroscientist at the Hospital for Sick Children in Toronto. He has reported this phenomenon in mice, guinea pigs and degus (SN: 6/14/14, p. 7).
Maybe rats are the exception, he says, “but I’m not convinced.”

In 2014, Frankland and colleagues reported that brain cell genesis clears out fearful memories in three different kinds of rodents. Two years later, Frankland’s team found similar results with spatial memories. After exercising, mice had trouble remembering the location of a hidden platform in a water maze, the team reported in February in Nature Communications. Again, Frankland and colleagues pinned the memory wipeout on brain cell creation — like a chalkboard eraser that brushes away old information. The wipe seemed to clear the way for new memories to form.

Shetty, a neuroscientist at Texas A&M Health Science Center in Temple, wondered if the results held true in rats, too. “Rats are quite different from mice,” he says. “Their biology is similar to humans.”
Using a water maze similar to Frankland’s, Shetty’s team taught two groups of rats how to find a hidden platform in eight training sessions over eight days. Then rats in just one of the groups exercised on a running wheel. Four weeks later, rats in both groups performed the same in the maze test — despite the fact that running rats had 1.5 to 2 times more newly born brain cells in the hippocampus, a skinny strip of tissue that’s thought to help form new memories.
These results and other memory tests “clearly showed that exercise did not interfere with memory recall,” Shetty says. And it’s likely that exercise doesn’t harm human memories either, he says.

Frankland says it’s possible that Shetty’s rats just learned the water maze too well. Shetty’s team trained their rodents for longer than Frankland’s team did, perhaps etching memories more deeply in the brain.

“The stronger the memory is, the harder it is going to be to erase it,” Frankland says.

But he points out that erasing memories isn’t necessarily a bad thing. “People get hung up on this idea,” he says, but actually, clearing out old info from the brain — forgetting — is important. Without some sort of clearance process, “your memory is going to be full of junk.”

City of graphene hosts forum full of questions

Manchester, England, is not the birthplace of graphene — the atom-thin, honeycomb-like layer of carbon known for its wondrous properties and seemingly limitless applications. But the city is the material’s main booster and, according to the University of Manchester, the official Home of Graphene. That’s because it was there that Andre Geim and Kostya Novoselov figured out that you could isolate the elusive material from graphite (the “lead” in pencils) with repeated dabs of sticky tape.
The two-dimensional material also proved to be a peerless electrical conductor and superstrong, earning the two Manchester scientists the 2010 Nobel Prize in physics. So when the city played host to the EuroScience Open Forum conference late last month, it made sense that Geim, graphene and the material’s many evolving applications took center stage. At the local science museum’s new exhibit about graphene, I learned that Geim is the only Nobelist who has also been honored with an Ig Nobel (which has fun celebrating seemingly useless research in science). He contends many are more familiar with his Ig Nobel–winning device to levitate a tiny frog than with his work on graphene.

Notably, graphene comes up in both of the feature stories in this issue, adding some heft, perhaps, to Mancunian claims. In Thomas Sumner’s cover story “Quenching society’s thirst,” about the growing interest in desalination to meet the globe’s escalating need for freshwater, graphene oxide has a potentially starring role. New membranes made from this material may help increase the efficiency of separating salt from water. Cost and efficiency, Sumner reports, remain the biggest obstacles to the widespread use of desalination.

Graphene can serve as analogy and inspiration in physicists’ efforts to create solid metallic hydrogen, another theorized wonder material, which Emily Conover describes in “Chasing a devious metal.” “It’s a high-stakes, high-passion pursuit that sparks dreams of a coveted new material that could unlock enormous technological advances in electronics,” Conover writes. Solid hydrogen, which has been made, takes on a graphenelike structure when squeezed to high pressures. Solid metal hydrogen might be a superconductor at room temperature, an exciting prospect. Despite significant progress, so far no one has been able to create it.

Local celebrity or not, graphene did share the spotlight with other science superstars at the EuroScience meeting. The gene-editing tool CRISPR got lots of attention. In a review of the historic detection of gravitational waves, Sheila Rowan of the University of Glasgow offered a bevy of questions that gravitational astronomy might be able to answer in the coming years: Where and when do black holes form? What does that tell you about the large-scale formation of galaxies? Is general relativity still valid when gravity is very strong (such as near supermassive black holes)? A session on the human microbiome generated even more questions, as scientists described efforts to use microbial species as telltale signs of diseases such as cancer. And a debate about how to prevent food allergies left most agreeing that more data are needed. As answers come in on all of these and many more fascinating topics, you can be sure that Science News will be there to report on them.

Lizard mom’s microbiome may protect her eggs

COLUMBIA, Mo. — Human babies born via cesarean section miss out on an opportunity to pick up beneficial microbes that other babies get when they take a trip through mom’s vagina. And even though the scientific jury’s still out on whether this is a good idea, some parents have been wiping their C-section babies down with vaginal fluid in the hopes that their newborns might get some of those microbial benefits, Laura Sanders reported earlier this yearover at the Growth Curve blog.

Microbial transfer from mom to offspring happens in a lot of species, but researchers are more familiar with how species that give live birth do this than those that lay eggs, biologist Stacey Weiss of the University of Puget Sound in Tacoma, Wash., noted August 1 at the 53rd Annual Conference of the Animal Behavior Society. Researchers have found that moms can transfer microbes right into the egg itself before it is laid or onto or near the egg after laying.

But Weiss thinks that such microbial transfer might happen through another route — as eggs travel through a female animal’s cloaca. (The cloaca is a combination of genital tract and end of the digestive system found in many invertebrates and most vertebrates, except most mammals.) She and her colleagues have been studying whether striped plateau lizard moms transfer microbes that protect their eggs from pathogens.

“Pathogenic infection is one of the leading causes of egg mortality,” she said. And some studies have proposed that microbes might be able to protect against those infections. None have yet proposed that the source of the microbes could be the cloaca, but this might be a common source since “all vertebrate eggs go through cloacas, and all cloacas have microbes,” she said.

Weiss latched onto the idea that microbes from the cloaca might be important after noticing that when she obtained eggs through dissection, they tended to have a lower survival rate than eggs that were laid. The dissected eggs often succumbed to fungal infections, while the laid eggs did not.

She and her team started by comparing the microbiomes of male and female lizards’ cloacas. “Females are different than males,” she said. Males had more diverse microbial communities in their cloacas. Females were missing whole categories of microbes found in males and had one type that is known to have antifungal activity.

The researchers then compared the microbiomes of eggs that were laid with those that had been dissected out. The team is still waiting on the results of DNA tests that will tell them exactly what kinds of microbes are found on the eggs, but initial results showed that the laid eggs are more likely to have any bacteria at all. “There’s something about going through the cloaca that is increasing bacterial load on these eggshells,” Weiss said. Fungi, though, showed up only on eggs that had been obtained through dissection.
Weiss, her colleagues and some high school students then performed tests in which fungus was applied directly to eggs. They found that laid eggs were able to inhibit fungal growth while dissected eggs were not. So it appears that the mom’s cloaca microbiome may indeed be providing some protection for her offspring.

Weiss said that these results, while still preliminary, may help expand what parental protection of offspring means. In species without direct parental care, transfer of microbes might be an important way that moms and dads help to keep their offspring safe.

Darwin’s Dogs wants your dog’s DNA

Going for walks, playing fetch and now participating in genetic research are just a few things people and their dogs can do together.

Darwin’s Dogs, a citizen science project headquartered at the University of Massachusetts Medical School in Worcester, is looking for good — and bad — dogs to donate DNA. The project aims to uncover genes that govern behavior, including those involved in mental illness in both people and pets.

Looking to dogs for clues about mental illness isn’t as strange as it may seem. Certain breeds are plagued by some of the same diseases and mental health issues that afflict people. Researchers have learned about the genetics of narcolepsy and obsessive compulsive disorder, as well as cancer, blindness and many other ailments from studying purebred dogs. Studies of purebreds are mainly useful when the problem is caused by mutations in a single gene. But most behaviors are the product of interactions between many genes and the environment. A search for those genes can’t be done with a small number of genetically similar dogs. So, Darwin’s Dogs hopes to gather data on a large number of canines, including many breeds and genetically diverse mutts.
Finding behavior-related genes, such as ones that lead dogs to chew up shoes or engage in marathon fetch sessions, may give clues to genes that affect human behavior. “It seemed to me that if we could understand how [changes in DNA] make a dog so excited about chasing a ball, we could learn something about how our brains work and what goes wrong in psychiatric disease,” says project leader Elinor Karlsson.

Karlsson and colleagues launched darwinsdogs.org, inviting people to answer questions about their dogs’ behavior and share their pets’ DNA. More than 7,000 dog owners have already signed up, and the researchers are still recruiting new volunteers.

The process is simple and can be done alone with your dog, or even as a family activity. First, take an online quiz about your canine companion. The quiz is divided into multiple sections. Some sections gather basic information about your dog’s appearance, exercise and eating habits; others ask about simple behaviors, such as whether your dog crosses its front paws when lying down or tilts its head. (Some questions are philosophical puzzles like whether your dog knows it is a dog.) Each question has a comment box in case you want to explain an answer. Plan to spend at least half an hour completing the questionnaire.

Once the questions are answered and the dog is registered, researchers send you a DNA sampling kit that comes with written instructions and an easy-to-follow picture guide. The kit contains a large sterile cotton swab for collecting DNA from your dog’s mouth. (It’s an easy procedure for the human involved, and Sally, the 14-year-old Irish setter “volunteer” Science News sampled, was rather stoic.) Also included is a tape measure for recording your dog’s height, length, nose and collar size. When you’re done, just seal the sample, measurement sheet and consent form inside the return mailer and drop it in a mailbox.

Dog owners don’t need to pay a fee to participate, but they do need patience, Karlsson says. It takes time to analyze DNA, and the researchers can’t say exactly how long it will be before owners (and Science News) learn their dogs’ results. These results will include the dog’s raw genetic data as well as information about the dog’s possible ancestry. Knowing ancestry or particular mutations a dog carries may help veterinarians personalize a dog’s care.
Dog trainers are being enlisted to give owners feedback on their dogs’ personalities and to suggest activities the dogs may enjoy. Karlsson hopes to create a way for impatient owners who are willing to donate money to the project to get their reports back faster.