Student Games concludes with hope for future

China's first Student (Youth) Games concluded on Wednesday in Nanning, South China's Guangxi Zhuang Autonomous Region. Drawing about 20,000 young players, the Games awarded 805 gold medals across various sports. 

The Games showcased outstanding athletic achievements and the deepening integration of sports and education in China. Young athletes from different regions and schools competed and interacted in a display of youthful vitality. 

The Games marked the merging and upgrading of the National Youth Games and the National Student Games, providing a high-level competitive platform for young sports talents in China. Notably, 11 world youth records were exceeded, one world record was tied, and three Asian records were bettered.

Among all the 69 delegations participating in the open group, 64 won medals, with 54 winning gold medals. Delegations from the Hong Kong and Macao Special Administrative Regions won gold medals in the equestrian events and swimming events, respectively.

Additionally, a number of national records, national youth records and national juvenile records were set in sports such as shooting, track and field and weightlifting. In the campus group, all 34 delegations won medals, with 30 winning gold.

The first gold medal of the Games was won in Beihai, Guangxi, where 19-year-old Huang Yaoshu from the Haikou team won the men's longboard surfing event, leading the runner-up by nearly five points. 

In less than half a year since he started surfing in July 2017, Huang was selected for the Provincial Surfing Team of Hainan, the southernmost island province of China. As a kid who grew up in a fishing village, he had a natural love for surfing, but he said that he was not a talented athlete and so had to train hard for a long time. He noted that mastering a new move gives him a sense of accomplishment.

In Mashan county of Guangxi, 14-year-old Li Yantan from Guling Town Junior High School, a rural school surrounded by cliffs and precipices, excelled in rock climbing. The girl from the Zhuang ethnic group improved her performance from 11.90 seconds in the preliminaries to 10.91 seconds in the finals, securing a gold medal. Her coach, Wu Guoyong, mentioned that Li had been training in rock climbing since primary school and had shown significant improvement over the past five years.

The Games serve as an important opportunity to showcase the development of youth sports in China and represent the latest attempt at integrating sports and education. This integration is crucial for the overall development and growth of young athletes in the country, sport commentator Luo Le told the Global Times.

Luo noted that the Games provide an excellent platform for selecting talents for China's competitive sports industry. It offers young athletes a rare opportunity to gain experience in major competitions, which is vital for their development and future success in sports.

Chinese star hurdler Wu Yanni, who won the women's 100-meter hurdles during the Games, hit back at online criticism after her win.

"Some people online were saying, 'Don't jump the gun again this time.' But I was thinking, even if I did, so what?" 

Wu was disqualified for a false start at the 19th Asian Games held in Hangzhou in October. She gained supports for her confidence and straightforwardness after her public push back at the Student (Youth) Games. 

The environment in which the current generation of young athletes is growing up is significantly different from that of earlier athletes. These athletes are maturing in an era dominated by new media, and they themselves are examples of how to spread the spirit and culture of sports to the wider youth community, experts said. 

"As representatives of the new generation and the future of China's sports industry, they play a pivotal role in guiding younger athletic talents. The channels through which they exert their influence and promote sports have evolved, reflecting the broader trends in societal development," said Luo.

"These athletes are not only embracing but also shaping the societal trends in sports, effectively communicating the values and culture of sports to the youth of today. The Games have also been a part of that chain," Luo said. 

Life on Earth may have begun as dividing droplets

NEW ORLEANS — In a primordial soup on ancient Earth, droplets of chemicals may have paved the way for the first cells. Shape-shifting droplets split, grow and split again in new computer simulations. The result indicates that simple chemical blobs can exhibit replication, one of the most basic properties of life, physicist Rabea Seyboldt of the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, reported March 16 at a meeting of the American Physical Society.

Within a liquid, small droplets of particular chemicals can separate out, like beads of oil in water. Such globules typically remain spherical, growing as they merge with other drops. But in simulations, Seyboldt and colleagues found that droplets might behave in a counterintuitive way under certain conditions, elongating and eventually dividing into two.
If additional droplet material is continuously produced in reactions in the primordial soup, chemicals will accumulate on either end of a droplet, causing it to elongate, the simulations show. Meanwhile, waste products from the droplet are eliminated from the middle, causing the droplet to pinch in and eventually split. The resulting pair of droplets would then grow and split again to create a new generation. In addition to the above reactions, the process requires an energy source, such as heat or chemicals from a hydrothermal vent, to get reactions going.

The study, which was also described in Nature Physics in December, is theoretical — the researchers didn’t select particular chemicals for study but simply showed that certain types of reactions could cause droplets to split.

How such droplets would have evolved into vastly more complicated cells is unknown. “This is really a minimal scenario that’s supposed to give the very first indications of something that goes towards life, but if you look at living cells today, they’re infinitely more complex,” Seyboldt said.

First controlled nuclear chain reaction achieved 75 years ago

Some scientific anniversaries celebrate events so momentous that they capture the attention of many nonscientists as well — or even the entire world.

One such anniversary is upon us. December 2 marks the semisesquicentennial (75th anniversary) of the first controlled and sustained nuclear fission chain reaction. Only four years after German scientists discovered nuclear fission, scientists in America took the first step toward harnessing it. Many of those scientists were not Americans, though, but immigrants appalled by Hitler and horrified at the prospect that he might acquire a nuclear fission weapon.

Among the immigrants who initiated the American fission effort was Albert Einstein. His letter to President Franklin Roosevelt, composed at the request and with the aid of immigrant Leo Szilard from Hungary, warned of nuclear fission’s explosive potential. Presented with Einstein’s letter in October 1939, Roosevelt launched what soon became the Manhattan Project, which eventually produced the atomic bomb. It was another immigrant, Enrico Fermi from Italy, who led the initial efforts to show that building an atomic bomb was possible.

Fermi had arrived in the United States in January 1939, shortly after receiving the Nobel Prize in physics for his work on creating artificial elements heavier than uranium. Except that he hadn’t actually done so — his “new elements” were actually familiar elements produced by the splitting of the uranium nucleus. But nobody knew that fission was possible, so Fermi had misinterpreted his results. Chemists Otto Hahn and Fritz Strassmann, working in Germany, conducted experiments in 1938 that produced the element barium by bombarding uranium with neutrons. So Hahn and Strassmann got the credit for discovering fission, although they didn’t really know what they had done either. It was Lise Meitner, a former collaborator of Hahn’s who had recently left Germany to avoid Nazi anti-Semitism, who figured out that they had split the uranium nucleus.
Meitner’s nephew Otto Frisch revealed her insight to Niels Bohr, the world’s leading atomic physicist, just as he stepped aboard a ship for a visit to America. Upon arriving in the United States, Bohr informed Fermi and Princeton University physicist John Archibald Wheeler of Hahn’s experiment and Meitner’s explanation. Fermi immediately began further experimental work at Columbia University to investigate fission, as did Szilard, also at Columbia (and others in Europe); Bohr and Wheeler tackled the issue from the theoretical side.

Fermi and Szilard quickly succeeded in showing that a fission “chain reaction” was in principle possible: Neutrons emitted from fissioning uranium nuclei could induce more fission. By September, Bohr and Wheeler had produced a thorough theoretical analysis, explaining the physics underlying the fission process and identifying which isotope of uranium fissioned most readily. It was clear that the initial speculations about fission’s potential power had not been exaggerated.

“Almost immediately it occurred to many people around the world that this could be used to make power and that it could be used for nuclear explosives,” another immigrant who worked on the Manhattan Project, the German physicist Hans Bethe, told me during an interview in 1997. “Lots of people verified that indeed when uranium is bombarded by neutrons, slow neutrons in particular, a process occurs which releases tremendous amounts of energy.”
Bethe, working at Cornell University, did not immediately join the fission project — he thought building a bomb would take too long to matter for World War II. “I thought this had nothing to do with the war,” he said. “So I instead went into radar.”

Fermi, despite being an immigrant, was put in charge of constructing an “atomic pile” (nowadays nuclear reactor) to verify the chain reaction theory. He was, after all, widely acknowledged as the world’s leading nuclear experimentalist (and was no slouch as a theorist either); colleagues referred to him as “The Pope” because of his supposed infallibility. Construction of the pile began on a squash court under the stands of the University of Chicago’s football stadium. The goal was to demonstrate the ability to generate a chain reaction, in which any one fissioning nucleus would emit enough neutrons to trigger even more nuclei to fission.

“It became clear to Fermi almost immediately that in order to do this with natural uranium you had to slow down the neutrons,” Bethe said.

Fermi decided that the best material for slowing neutrons was graphite, the form of carbon commonly used as pencil lead. But in preliminary tests the graphite did not do the job as Fermi had anticipated. He reasoned that the graphite contained too many impurities to work effectively. So Szilard began searching for a company that could produce ultrapure graphite. He found one, Bethe recalled, that happily agreed to meet Fermi’s purity requirements — for double the usual graphite price.
Ultimately Fermi’s atomic pile succeeded, producing a sustained chain reaction on December 2, 1942. That success led to the establishment of the secret laboratory in Los Alamos, N.M., where physicists built the bombs that brought World War II to an end in 1945.

By then, Bethe had been persuaded to join the project. He arrived at Los Alamos in April 1943 and witnessed the first nuclear explosion, at Alamogordo, N.M., on July 16, 1945.

“I was among the people who looked at it from a 20-mile distance,” he said. “It was impressive.”

Historians frequently cite the report of J. Robert Oppenheimer, director of the Los Alamos project, who said that the explosion reminded him of a line from the Hindu Bhagavad Gita: “Now I am become Death, the destroyer of worlds.”

Bethe recalled a different response, from one of the military officials on the scene.

“One of the officers at the explosion said, ‘My god. Those longhairs have let it get away from them.’”

How bees defend against some controversial insecticides

Honeybees and bumblebees have a way to resist toxic compounds in some widely used insecticides.

These bees make enzymes that help the insects break down a type of neonicotinoid called thiacloprid, scientists report March 22 in Current Biology. Neonicotinoids have been linked to negative effects on bee health, such as difficulty reproducing in honeybees (SN: 7/26/16, p 16). But bees respond to different types of the insecticides in various ways. This finding could help scientists design versions of neonicotinoids that are less harmful to bees, the researchers say.
Such work could have broad ramifications, says study coauthor Chris Bass, an applied entomologist at the University of Exeter in England. “Bees are hugely important to the pollination of crops and wild flowers and biodiversity in general.”

Neonicotinoids are typically coated on seeds such as corn and sometimes sprayed on crops to protect the plants from insect pests. The chemicals are effective, but their use has been suspected to be involved in worrisome declines in numbers of wild pollinators (SN Online: 4/5/12).

Maj Rundlöf of Lund University in Sweden helped raise the alarm about the insecticides. In 2015, she reported that neonicotinoid-treated crops reduced the populations of bees that fed from the plants. Rundlöf, who was not involved with the new study, says the new research is important because it clarifies differences between the insecticides. “All neonicotinoids are not the same,” she says. “It’s a bit unrealistic to damn a whole group of pesticides.”

Bass and his colleagues, which include scientists from Bayer, one of the main producers of neonicotinoids, investigated resistance to thiacloprid by looking at bees’ defense systems. The team focused on enzymes known as P450s, which can metabolize toxic chemicals, breaking them down before they affect the bee nervous system. The researchers used drugs to inhibit groups of P450 enzymes. When the family enzymes called CYP9Q was inhibited, bees became 170 times as sensitive to thiacloprid, dying from a much smaller dose, the researchers found. Discovering the enzymes’ protective power could lead to more effective ways to simultaneously avoid harming bees and help crops.
“We live in an era that uses pesticides,” Rundlöf says. “We need to figure out the ones that are safest.”

Your brain wires itself to match your native language

The language we learn growing up seems to leave a lasting, biological imprint on our brains.

German and Arabic native speakers have different connection strengths in specific parts of the brain’s language circuit, researchers report February 19 in NeuroImage, hinting that the cognitive demands of our native languages physically shape the brain. The new study, based on nearly 100 brain scans, is one of the first in which scientists have identified these kinds of structural wiring differences in a large group of monolingual adults.
“The specific difficulties [of each language] leave distinct traces in the brain,” says neuroscientist Alfred Anwander of the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany. “So we are not the same if we learn to speak one language, or if we learn another.”

Every human language expresses itself using a different set of tricks. Some use rich systems of suffixes and prefixes to build enormous, dense words. Others change how words sound or how they are arranged within phrases to create meaning. Our brains process these tricks in a constellation of brain regions connected by white matter. This tissue routes long, cablelike nerve cells from one part of the brain to another and speeds up communication between them. Wiring brain regions together this way is part of how we learn: The more often we use a connection, the more robust it becomes.

Different parts of the brain’s language circuit have different jobs. But while the large-scale structure of this circuit is universal, every language has “its own difficulties,” which might result in different white matter networks, Anwander says.

He and his team recruited 94 healthy volunteers who spoke one of two unrelated native languages — German or Levantine Arabic — for structural MRI brain scans. The Arabic speakers had arrived recently in Germany as refugees and didn’t yet speak German. They tended to have stronger connections across their left and right hemispheres, the scans revealed, whereas the German speakers had a denser network of connections within the left hemisphere.

“This corresponds to the specific difficulties in the respective languages,” Anwander says.
For instance, the complexity of Arabic’s roots — trios of consonants that buddy up with vowel patterns to produce words — might demand extra effort from parts of the brain involved in parsing sounds and words. A common example of this kind of root is k-t-b, which forms words related to writing like kitaab (book), taktub (you or she writes) and maktab (office). Arabic text is also written right to left, which the researchers speculate might demand more communication between the hemispheres.

German, for its part, has a complex and flexible word order that allows the language to create subtle shades of meaning just by shuffling around words within a phrase. While an English speaker can’t rearrange the words woman, ball and dog in the sentence “the woman gave the dog a ball” without garbling the core meaning, it’s possible to do exactly that in German. This could explain the German speakers’ denser white matter networks within parts of the left hemisphere that parse word order.

Still, it’s possible that the Arabic speakers’ recent arrival in Germany could have tweaked their white matter networks too, says Zhenghan Qi, a cognitive neuroscientist at Northeastern University in Boston who was not part of the study.

Just one month of learning a new language, she says, can lead to more engagement of the brain’s right hemisphere and greater interaction between the two hemispheres. Examining MRI scans of Arabic speakers living in their home countries or tracking brain changes as people learn new languages would help separate the effects of language learning from those of native language, Qi says.

While the new study focused just on the language circuit, parts of that circuit handle more than just language, Qi says. And language learning “might also change nonlinguistic regions of the brain,” so it’s possible that people with different language experiences might process nonlanguage information differently too, she says.

It’s still controversial whether language-associated white matter rewiring affects more than just language, Anwander says. But at least within the language circuit, the new results hint that our mother tongues are far more than just the words we happened to grow up with — they are quite literally a part of us.

Stressed plants make ultrasonic clicking noises

Listen carefully, and a plant may tell you it’s thirsty.

Dry tomato and tobacco plants emit distinct ultrasonic clicks, scientists report March 30 in Cell. The noises sound something like a kid stomping on bubble wrap and also popped off when scientists snipped the plants’ stems.

When evolutionary biologist Lilach Hadany gives talks about her team’s results, she says, people tell her, “‘You cut the tomato and it screams.’” But that is jumping to a conclusion her team has not yet reached. “Screaming” assumes the plant is intentionally making the noise, Hadany says. In the new study, “we’ve shown only that plants emit informative sounds.”
Intentional or not, detecting those sounds could be a step forward for agriculture, potentially offering a new way to monitor water stress in plants, the study’s authors propose. If microphones in fields or greenhouses picked up certain clicks, farmers would know their crops were getting dry.

Previous work had suggested that some plants produce vibrations and ultrasonic emissions. But those experiments used sensors connected directly to the plant, says Alexandre Ponomarenko, a physicist at the biotech company NETRI in Lyon, France, who has detected sounds made by slices of pine trees in the lab. Hadany’s team tried something new.

She and her colleagues at Tel Aviv University set up ultrasonic microphones next to, but not touching, living plants. The team wanted to find out if the plants could generate airborne sounds — vibrations that travel through the air.

The researchers first detected the horticultural hiccups coming from plants set up on tables in the lab. But the team couldn’t be sure that something else wasn’t making the noises. So the researchers ordered sound-dampening acoustic boxes and tucked them in the basement away from the lab’s hustle and bustle. Inside the hushed boxes, thirsty tomato plants emitted about 35 ultrasonic clicks per hour, the team found. Tomato plants cut at the stem were slightly less noisy, and tobacco plants clicked even less. Plants not water-stressed or chopped kept mostly quiet.
The plants’ short sounds were about as loud as a typical conversation, but too high-pitched for humans to hear (though dogs’ ears might perk up). And each plant species had a recognizable “voice.” A machine learning algorithm the team created could tell the difference between clicks from tomato plants and tobacco plants. It could also pick out thirsty and hydrated plants.

The algorithm could even differentiate between plants when they sat in a noisy greenhouse, filled with the sounds of people talking and building renovations next door.
Hadany doesn’t know exactly what’s causing the emitted sounds; it could simply be bubbles forming and popping within the plants’ water-carrying tissues. The sounds might be akin to “someone’s creaking joints,” says Tom Bennett, a plant biologist at the University of Leeds in England who was not involved with the research (SN: 3/29/18). “It doesn’t mean that they’re crying for help.”

Still, it’s possible that other organisms eavesdrop on the noises, he says, something Hadany’s team is currently investigating. She is curious whether other plants or insects like moths, some of which can hear in the ultrasonic range, are tuning in. It’s possible moths, as well as mice and other mammals, could detect the noises as far as five meters away, the team suggests.

And tomato and tobacco weren’t the only plants that prattled. Similar sounds came from wheat, corn, Cabernet Sauvignon grapevines and pincushion cactus. “It is happening in so many different plants that grow in so many different environments,” says Ravishankar Palanivelu, a plant developmental biologist at the University of Arizona in Tucson who did not work on the study. “It seems like this is not a random thing.”

He doesn’t know if the sounds have any evolutionary significance, but, Palanivelu says, he thinks the study’s results will certainly generate some noise.

Peruvian fossils yield a four-legged otterlike whale with hooves

An ancient four-legged whale walked across land on hooved toes and swam in the sea like an otter.

The newly discovered species turned up in 2011 in a cache of fossilized bones in Playa Media Luna, a dry coastal area of Peru. Jawbones and teeth pegged it as an ancient cetacean, a member of the whale family. And more bones followed.

“We were definitely surprised to find this type of whale in these layers, but the best surprise was its degree of completeness,” says Olivier Lambert, a paleontologist at the Royal Belgian Institute of Natural Sciences in Brussels.
Jaw, tooth and spine features, described April 4 in Current Biology, don’t quite match anything else in the fossil record, setting the skeleton apart as a new species, dubbed Peregocetus pacificus (meaning “the traveling whale that reached the Pacific Ocean”). At 42.6 million years old, it’s the oldest whale skeleton found in the New World, though some fossilized whale teeth from North America may be even older.

Big, possibly webbed feet and long toes would have allowed P. pacificus to dog-paddle or swim freestyle. And like modern otters and beavers, this whale’s vertebrae suggest that its tail also functioned as a paddle. With tiny hooves and strong legs and hips, the animal could walk on land. But “it was definitely a better swimmer than walker,” Lambert says.

Whales got their start on land and gradually adapted to a water-dwelling lifestyle. The first amphibious whales emerged more than 50 million years ago near what’s now India and Pakistan. The new species shares some similar features with Maiacetus and Rodhocetus, two early whales from that area. P. pacificus’ age supports the idea that whales migrated across the South Atlantic and around South America to the Pacific Ocean in their first 10 million years of existence.

Muons unveiled new details about a void in Egypt’s Great Pyramid

A nebulous void in Egypt’s Great Pyramid of Giza has been unveiled thanks to strange subatomic particles called muons.

Scientists first identified the void in 2016 using muons, heavy relatives of electrons that can penetrate through solid materials. Thought to be a corridor-shaped hole, the void was located near a chevron-shaped structure visible on the pyramid’s north face. Further muon measurements revealed new details of the void’s size and shape, scientists from the ScanPyramids team report March 2 in Nature Communications.
The new muon measurements indicate that the void is a 9-meter-long corridor about 2 meters wide by 2 meters tall, close to the pyramid’s north face. ScanPyramids researchers made additional measurements with ground-penetrating radar and ultrasonic testing, they reported March 2 in NDT & E International. The detailed measurements allowed the scientists to use an endoscope to take images inside the chamber, the team announced. The images reveal a corridor with a vaulted ceiling, presumably one that was hasn’t been seen by humans since the pyramid was built more than 4,500 years ago. The corridor’s purpose is still unclear.
Muons are created when high-energy particles from space called cosmic rays crash into the Earth’s atmosphere. Muons are partially absorbed as they rain down onto structures such as the pyramids. Using detectors placed inside the pyramid, scientists from ScanPyramids zeroed in on regions where more muons made it through, indicating they’d traversed less material, which let them map out the location of the void.

Scientists also recently used muons to probe an ancient Chinese wall (SN: 1/30/23), a nuclear reactor and various volcanoes (SN: 4/22/22).

Artificial intelligence has now pretty much conquered poker

Artificial intelligence has passed the last major milestone in mastering poker: six-player no-limit Texas Hold’em.

Games like poker, with hidden cards and players who bluff, present a greater challenge to AI than games where every player can see the whole board. Over the last few years, computers have become aces at increasingly complicated forms of one-on-one poker, but multiplayer games take that complexity to the next level (SN Online: 5/13/15).

Now, a card shark AI dubbed Pluribus has outplayed more than a dozen elite professionals at six-player Texas Hold’em, researchers report online July 11 in Science. Algorithms that can plot against several adversaries using such spotty information could make savvy business negotiators, political strategists or cybersecurity watchdogs.
Pluribus honed its initial strategy by playing against copies of itself, starting from scratch and gradually learning which actions helped to win. Then, the AI used that intuition for when to hold and when to fold during the first betting round of each hand against five human players.

During subsequent betting rounds, Pluribus fine-tuned its strategy by imagining how the game might play out if it took different actions. Unlike artificial intelligence trained for two-player poker, Pluribus didn’t speculate all the way to the end of the game — which would require too many computations when dealing with so many players (SN: 4/1/17, p. 12). Instead, the AI imagined several moves ahead and decided what to do based on those hypothetical futures and different strategies that players could adopt.

In 10,000 hands of Texas Hold’em, Pluribus competed against five contestants from a pool of 13 professionals, all of whom had won more than $1 million playing poker. Every 100 hands, Pluribus raked in, on average, about $480 from its human competitors.
“This is roughly the amount that elite human professionals aspire to beat weaker players by,” implying that Pluribus was a savvier player than its human opponents, says Noam Brown of Facebook AI Research in New York City. Brown, along with Tuomas Sandholm of Carnegie Mellon University in Pittsburgh, created Pluribus.

Now that AI has poker in the bag, algorithms could test their strategic reasoning in games with more complex hidden information, says computer scientist Viliam Lisý of the Czech Technical University in Prague, who was not involved in the work. In games like Kriegspiel — a chess spin-off where players can’t see each other’s pieces — the unknowns can become far more complicated than a few cards held close to opponents’ chests, Lisý says.

Video games like StarCraft, which allow many more types of moves and free players from rigid, turn-based play, could also serve as new tests of AI cleverness (SN: 5/11/19, p. 34).

Homo sapiens may have brought archery to Europe about 54,000 years ago

Homo sapiens who reached Europe around 54,000 years ago introduced bows and arrows to that continent, a new study suggests.

Researchers examined tiny triangular stone points and other artifacts excavated at a rock-shelter in southern France called Grotte Mandrin. H. sapiens on the move probably brought archery techniques from Africa to Europe, archaeologist Laure Metz of Aix-Marseille University in France and colleagues report February 22 in Science Advances.

“Metz and colleagues demonstrate bow hunting [at Grotte Mandrin] as convincingly as possible without being caught bow-in-hand,” says archaeologist Marlize Lombard of the University of Johannesburg, who did not participate in the new study.
No bows were found at the site. Wooden items such as bows preserve poorly. The oldest intact bows, found in northern European bogs, date to around 11,000 years ago, Metz says.

Previous stone and bone point discoveries suggest that bow-and-arrow hunting originated in Africa between about 80,000 and 60,000 years ago. And previously recovered fossil teeth indicate that H. sapiens visited Grotte Mandrin as early as 56,800 years ago, well before Neandertals’ demise around 40,000 years ago and much earlier than researchers had thought that H. sapiens first reached Europe (SN: 2/9/22).

“We’ve shown that the earliest known Homo sapiens to migrate into Neandertal territories had mastered the use of the bow,” Metz says.

No evidence suggests that Neandertals already present in Europe at that time launched arrows at prey. It’s also unclear whether archery provided any substantial hunting advantages to H. sapiens relative to spears that were thrust or thrown by Neandertals.
Among 852 stone artifacts excavated in a H. sapiens sediment layer at Grotte Mandrin dated to about 54,000 years ago, 196 triangular stone points displayed high-impact damage. Another 15 stone points showed signs of both high-impact damage and alterations caused by butchery activities, such as cutting.

Comparisons of those finds were made to damage on stone replicas of the artifacts that the researchers used as arrowheads shot from bows and as the tips of spears inserted in handheld throwing devices. Additional comparative evidence came from stone and bone arrowheads used by recent and present-day hunting groups.

Impact damage along the edges of stone points from the French site indicated that these implements had been attached at the bottom to shafts.

The smallest Grotte Mandrin points, many with a maximum width of no more than 10 millimeters, could have pierced animals’ hides only when shot from bows as the business ends of arrows, the researchers say. Experiments they conducted with replicas of the ancient stone points found that stone points less than 10 millimeters wide reach effective hunting speeds only when attached to arrow shafts propelled by a bow.

Larger stone points, some of them several times the size of the smaller points, could have been arrowheads or might have tipped spears that were thrown or thrust by hand or launched from handheld spear throwers, the researchers conclude.

Lombard, the University of Johannesburg archaeologist, suspects that the first H. sapiens at the French rock-shelter hunted with bows and arrows as well as with spears, depending on where and what they were hunting. Earlier studies directed by Lombard indicated that sub-Saharan Africans similarly alternated between these two types of hunting weapons starting between about 70,000 and 58,000 years ago.

H. sapiens newcomers to Europe may have learned from Neandertals that spear hunting in large groups takes precedence on frigid landscapes, where bow strings can easily snap and long-distance pursuit of prey is not energy efficient, Lombard says.

But learning about archery from H. sapiens may not have been in the cards for Neandertals. Based on prior analyses of brain impressions on the inside surfaces of fossil skulls, Lombard suspects that Neandertals’ brains did not enable the enhanced visual and spatial abilities that H. sapiens exploited to hunt with bows and arrows.

That’s a possibility, though other controversial evidence suggests that Neandertals behaved no differently from Stone Age H. sapiens (SN: 3/26/20).If Grotte Mandrin Neandertals never hunted with bows and arrows but still survived just fine alongside H. sapiens archers for roughly 14,000 years, reasons for Neandertals’ ultimate demise remain as mysterious as ever.