Physicists stored data in quantum holograms made of twisted light

Particles of twisted light that have been entangled using quantum mechanics offer a new approach to dense and secure data storage.

Holograms that produce 3-D images and serve as security features on credit cards are usually made with patterns laid down with beams of laser light. In recent years, physicists have found ways to create holograms with entangled photons instead. Now there is, literally, a new twist to the technology.

Entangled photons that travel in corkscrew paths have resulted in holograms that offer the possibility of dense and ultrasecure data encryption, researchers report in a study to appear in Physical Review Letters.
Light can move in a variety of ways, including the up-and-down and side-to-side patterns of polarized light. But when it carries a type of rotation known as orbital angular momentum, it can also propagate in spirals that resemble twisted rotini pasta.

Like any other photons, the twisted versions can be entangled so that they essentially act as one entity. Something that affects one of an entangled photon pair instantly affects the other, even if they are very far apart.

In previous experiments, researchers have sent data through the air in entangled pairs of twisted photons (SN: 8/5/15). The approach should allow high-speed data transmission because light can come with different amounts of twist, with each twist serving as a different channel of communication.

Now the same approach has been applied to record data in holograms. Instead of transmitting information on multiple, twisted light channels, photon pairs with different amounts of twist create distinct sets of data in a single hologram. The more orbital angular momentum states involved, each with different amounts of twist, the more data researchers can pack into a hologram.

In addition to cramming more data into holograms, increasing the variety of twists used to record the data boosts security. Anyone who wants to read the information out needs to know, or guess, how the light that recorded it was twisted.

For a hologram relying on two types of twist, says physicist Xiangdong Zhang of the Beijing Institute of Technology, you would have to pick the right combination of the twists from about 80 possibilities to decode the data. Bumping that up to combinations of seven distinct twists leads to millions of possibilities. That, Zhang says, “should be enough to ensure our quantum holographic encryption system has enough security level.”
The researchers demonstrated their technique by encoding words and letters in holograms and reading the data back out again with twisted light. Although the researchers produced images from the holographic data, says physicist Hugo Defienne of the Paris Institute of Nanosciences, the storage itself should not be confused with holographic images.

Defienne, who was not involved with the new research, says that other quantum holography schemes, such as his efforts with polarized photons, produce direct images of objects including microscopic structures.

“[Their] idea there is very different . . . from our approach in this sense,” Defrienne says. “They’re using holography to store information,” rather than creating the familiar 3-D images that most people associate with holograms.

The twisted light data storage that Zhang and his colleagues demonstrated is slow, requiring nearly 20 minutes to decode an image of the acronym “BIT,” for the Beijing Institute of Technology where the experiments were performed. And the security that the researchers have demonstrated is still relatively low because they included only up to six forms of twisted light in their experiments.

Zhang is confident that both limitations can be overcome with technical improvements. “We think that our technology has potential application in quantum information encryption,” he says, “especially quantum image encryption.”

76 percent of well-known insects fall outside protected areas

The existing boundaries of national parks and other habitat preserves aren’t enough to protect more than three-quarters of the world’s well-studied insects.

The finding, reported February 1 in One Earth, shows that people who design nature preserves “don’t really think about insects that much,” says coauthor Shawan Chowdhury, an ecologist at the German Centre for Integrative Biodiversity Research in Leipzig.

That’s a problem because insect populations around the globe are plummeting, a growing body of research suggests, probably due to climate change and human development (SN: 4/26/22). For instance, insect abundance in Puerto Rico has dropped by up to 98 percent over the last 35 years.
Threats to insect survival could have ripple effects on plants and other animals. Insects help form the foundation for many ecosystems: They pollinate around 80 percent of all plant species and serve as a staple in the diets of hundreds of thousands of animals (and the occasional carnivorous plant).

One way to avert insect extinctions is to set aside the land they need to survive. But scientists know the ranges for only about 100,000 of the estimated 5.5 million insect species. To determine how well existing protected areas may be aiding insect conservation, Chowdhury and colleagues mapped the known habitats of about 89,000 of those species and compared the ranges with the boundaries of preserves from the World Database on Protected Areas.

Overall, these spaces don’t safeguard enough habitat for 67,384 insect species — about 76 percent of the species included in the study — the team found. Roughly 2 percent of species do not overlap with protected areas at all.

Conserving insects, Chowdhury says, will mean setting aside more insect-friendly spaces in the years ahead.

Earth’s inner core may be reversing its rotation

Our planet may have had a recent change of heart.

Earth’s inner core may have temporarily stopped rotating relative to the mantle and surface, researchers report in the January 23 Nature Geoscience. Now, the direction of the inner core’s rotation may be reversing — part of what could be a roughly 70-year-long cycle that may influence the length of Earth’s days and its magnetic field — though some researchers are skeptical.

“We see strong evidence that the inner core has been rotating faster than the surface, [but] by around 2009 it nearly stopped,” says geophysicist Xiaodong Song of Peking University in Beijing. “Now it is gradually mov[ing] in the opposite direction.”
Such a profound turnaround might sound bizarre, but Earth is volatile (SN: 1/13/21). Bore through the ever-shifting crust and you’ll enter the titanic mantle, where behemoth masses of rock flow viscously over spans of millions of years, sometimes upwelling to excoriate the overlying crust (SN: 1/11/17, SN: 3/2/17, SN: 2/4/21). Delve deeper and you’ll reach Earth’s liquid outer core. Here, circulating currents of molten metals conjure our planet’s magnetic field (SN: 9/4/15). And at the heart of that melt, you’ll find a revolving, solid metal ball about 70 percent as wide as the moon.

This is the inner core (SN: 1/28/19). Studies have suggested that this solid heart may rotate within the liquid outer core, compelled by the outer core’s magnetic torque. Researchers have also argued the mantle’s immense gravitational pull may apply an erratic brake on the inner core’s rotation, causing it to oscillate.

Evidence for the inner core’s fluctuating rotation first emerged in 1996. Geophysicist Paul Richards of Columbia University’s Lamont-Doherty Earth Observatory in Palisades, N.Y., and Song, then also at Lamont-Doherty, reported that over a span of three decades, seismic waves from earthquakes took different amounts of time to traverse Earth’s solid heart.

The researchers inferred that the inner core rotates at a different speed than the mantle and crust, causing the time differences. The planet spins roughly 360 degrees in a day. Based on their calculations, the researchers estimated that the inner core, on average, rotates about 1 degree per year faster than the rest of Earth.

But other researchers have questioned that conclusion, some suggesting that the core spins slower than Song and Richards’ estimate or doesn’t spin differently at all.

In the new study, while analyzing global seismic data stretching back to the 1990s, Song and geophysicist Yi Yang — also at Peking University — made a surprising observation.
Before 2009, seismic waves generated by sequences and pairs of repeating earthquakes — known as multiplets and doublets — traveled at different rates through the inner core. This indicated the waves from recurring quakes were crossing different parts of the inner core, and that the inner core was rotating at a different pace than the rest of Earth, aligning with Song’s previous research.

But around 2009, the differences in travel times vanished. That suggested the inner core had ceased rotating with respect to the mantle and crust, Yang says. After 2009, these differences returned, but the researchers inferred that the waves were crossing parts of the inner core that suggested it was now rotating in the opposite direction relative to the rest of Earth.

The researchers then pored over records of Alaskan earthquake doublets dating to 1964. While the inner core appeared to rotate steadily for most of that time, it seems to have made another reversal in rotation in the early 1970s, the researchers say.

Song and Yang infer that the inner core may oscillate with a roughly 70-year periodicity — switching directions every 35 years or so. Because the inner core is gravitationally linked to the mantle and magnetically linked to the outer core, the researchers say these oscillations could explain known 60- to 70-year variations in the length of Earth’s days and the behavior of the planet’s magnetic field. However, more work is needed to pin down what mechanisms might be responsible.

But not all researchers are on board. Yang and Song “identif[y] this recent 10-year period [that] has less activity than before, and I think that’s probably reliable,” says geophysicist John Vidale of the University of Southern California in Los Angeles, who was not involved in the research. But beyond that, Vidale says, things get contentious.

In 2022, he and a colleague reported that seismic waves from nuclear tests show the inner core may reverse its rotation every three years or so. Meanwhile, other researchers have proposed that the inner core isn’t moving at all. Instead, they say, changes to the shape of the inner core’s surface could explain the differences in wave travel times.

Future observations will probably help disentangle the discrepancies between these studies, Vidale says. For now, he’s unruffled by the purported chthonic standstill. “In all likelihood, it’s irrelevant to life on the surface, but we don’t actually know what’s happening,” he says. “It’s incumbent on us to figure it out.”